

Installation Operation Maintenance

Air-Cooled Scroll Chillers

Model CGAM 20 — 120 Tons – Made in USA

February 2010

CG-SVX17C-EN

Warnings and Notices

Note that warnings and notices appear at appropriate intervals throughout this manual. Warnings are provided to alert installing contractors to potential hazards that could result in personal injury or death. Cautions are designed to alert personnel to hazardous situations that could result in personal injury, while notices indicate a situation that could result in equipment or property-damage-only accidents.

Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

ATTENTION: Warnings, Cautions and Notices appear at appropriate sections throughout this literature. Read these carefully.

WARNING: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION: Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

NOTICE: Indicates a situation that could result in equipment or property-damage only accidents.

NOTICE: Environmental Concerns!

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs such as HCFCs and HFCs.

NOTICE: Responsible Refrigerant Practices!

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

A WARNING: Refrigerant Warning Information!

Trane Model CGAM chillers use R-410A refrigerant which is a high-pressure refrigerant and requires careful attention to proper storage and handling procedures.

Use only manifold gauge sets designed for use with R-410A refrigerant. Use only refrigerant recovery units and cylinders designed for the higher pressures of R-410A refrigerant and POE oil.

R-410A must only be charged into the unit in a liquid state!

R-410A refrigerant must be stored in a clean, dry area out of sunlight. Never heat or allow refrigerant storage cylinder temperatures to reach 125°F or store the cylinders where temperatures will exceed 125°F. Keep cylinder valves tightly closed and valve caps in place when refrigerant cylinders are not in use.

WARNING: Personal Protective Equipment (PPE) Required!

Always refer to appropriate MSDS and OSHA guidelines when handling refrigerants. Use proper breathing, eye and body protection when handling refrigerants. Failure to follow proper handling guidelines could result in serious injury or death.

MARNING: Live Electrical Components

During installation, testing, servicing and troubleshooting of this product it may be necessary to work with live electrical components. Have a qualified, licensed electrician or other person who has been properly trained in working with live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in serious injury or death.

NOTICE: Trademarks

Trane and the Trane logo are trademarks of Trane in the United States and other countries. All trademarks referenced in this document are the trademarks of their respective owners.

Table of Contents

Model Number Description	
Unit Model Number	
Compressor Nameplate	
Compressor Model Number	
General Information	2
Unit Description	
Accessory/Options Information 14	
General Data Tables 10	6
Pre-Installation	
Inspection Checklist	
Unit Storage	
Installation Requirements 2	1
Unit Dimensions/Weights 22	2
Partial Heat Recovery - Water Connections	8
Weights	9
Installation - Mechanical	
Location Requirements	
Foundation	
Clearances	
Rigging	
Unit Isolation and Leveling	
Evaporator Piping	
Drainage	
Evaporator Piping Components	
Water Strainer 38 Flow Switch 38	
Freeze Protection	
Low Evap Refrigerant Cutout/Percent Glycol Recommendations 42	
Partial Heat Recovery 44	4
Installation - Electrical	7
General Recommendations4	7
Electrical Data Tables	
Installer-Supplied Components	
Power Supply Wiring	
	- 1

	_
Heater Power Supply Partial Heat Recovery Power Supply Partial Heat Recovery Power Supply	
Water Pump Power Supply	
Interconnecting Wiring	
Chilled Water Flow (Pump) Interlock	
Chilled Water Pump Control	
Chilled Water Pump Control - Field Supplied Dual Pumps Alarm and Status Relay Outputs (Programmable Relays)	
Low Voltage Wiring	
Emergency Stop	
External Auto/Stop	
Ice Building Option External Chilled Water Setpoint (ECWS) Option	
External Demand Limit Setpoint (ECWS) Option	
ECLS and EDLS Analog Input Signal Wiring Details:	
Chilled Water Reset (CWR)	66
Communications Interface options	
Tracer Communications Interface	
LonTalk Communications Interface for Chillers (LCI-C)	
CGAM Operating Principles	
General	70
Refrigerant Cycle	73
Oil System Operation (CGAM)	76
Controls Interface	79
DynaView Interface	80
Display Screens	
Auto, Stop/Immediate Stop	
Diagnostic Annunciation	
Main Screen	
Chiller Operating Mode	
Active Chilled Water Setpoint	
Other Active Setpoints	
Password-Protected Settings	
Settings Screen	
Local Time of Day Schedule Screen	
Lockout Screen	
Reports	
Power Up and Self Tests	
TechView	
Software Download	

Diagnostics View	
Configuration View	
Software View	
Binding View	
Pre-Start Checkout	118
Unit Voltage Power Supply	
Unit Voltage Imbalance	
Unit Voltage Phasing	
Water System	
Flow Rates	
Pressure Drop	
Start Up Checklist	122
Unit Start-Up Procedures	124
Sequence of Operation	124
Start-Up	127
Seasonal Unit Start-Up Procedure	128
Limit Conditions	
	-
Unit Shutdown	
Normal Shutdown to Stopped	
Seasonal Unit Shutdown	131
Maintenance	132
Periodic Maintenance	132
General	132
Weekly Maintenance	
Monthly Maintenance	
Annual Maintenance	
Compressor Service Information	
Compressor Electrical Connections	
Oil Level Oil Fill, Removal and Capacity	
Compressor Oil Capacity	
Oil Testing	
Compressor Operational Pump Down	136
Compressor Service Pump Down Procedure	
Oil Equalizer Line	
Tandem Compressor Suction Restrictors	
Compressor Replacement	
Mechanical Compressor Failure	
Electrical Compressor Failure	
Compressor Motor Megging	
Compressor Current Imbalance	

Refrigerant Piping 14 Compressor Electrical Terminal Box 14 Compressor Crankcase Heaters 14	40
Condenser Maintenance	
Evaporator Maintenance	41
Diagnostics	43
Explanatory Comments 14	43
Main Processor Diagnostics14	45
Sensor Failure Diagnostics1	53
Communication Diagnostics 1	54
Main Processor- Boot Messages and Diagnostics	59
Unit Wiring	61

Model Number Description

Overview

This manual covers the installation, operation and maintenance of the CGAM units.

Nameplates

The CGAM unit nameplates are applied to the exterior surface of the control panel door for 20-70 Ton sizes. The 80-120 Ton sizes have a nameplate on a support beam to the right side of the starter panel.

A compressor nameplate is located on each compressor.

Unit Nameplate

The unit nameplate provides the following information:

- Unit model and size descriptor.
- Unit serial number.
- Identifies unit electrical requirements.
- Lists correct operating charges of R-410A and refrigerant oil.
- Lists unit design pressures.
- Identifies installation, operation and maintenance and service data literature.
- Lists drawing numbers for unit wiring diagrams.

Figure 1. Unit Nameplate

RATED MIN CKT MAX FUSE/ VOLTAGE/HZ/PH AMPACITY (A) BREAKER (A) VOLTAGE/HZ/PH CKT 1 PROTECTION VOLTULIZATION MIN CKT MAX FUSE/ RAMPACITY (A) BREAKER (A) PROTECTION VOLTUTILIZATION MIN CKT MAX FUSE/ RAMPACITY (A) BREAKER (A) VOLTUTILIZATION WATTS CKT 2 WATTS CMPR CKT 2 WATTS COMPR MTR 2A CHARGE COMPR MTR 2B PROTECTION MTR 1C MTR 2B CKT 1 (LBS) COMPR MTR 2B CKT 1 (LBS) MTR 1C MTR 2B CKT 1 (LBS) COMPR MTR 2B CKT 1 (LBS) COMPR CKT 1 (LBS) CKT 1 (GAL) FAN MOTORS CMTY HP EA FLA EA YPD OTY PE EA FLA EA YPD OTY PE EA FLA EA YPD MP CTY WIND CKT MANTPACTURED UNDER ONE ONE MARK 5021 ME 5027400 5430 5430 5430 5430 5430 5430 5430 5	TRANE FOR OUTDOO	R USE
VOLTAGE/HZ/PH AMPACITY (A) BREAKER (A) VOLTUTILIZATION CKT 1 CKT 1 VOLTUTILIZATION MIN CKT MAX FUSE/ AMPACITY (A) BREAKER (A) VOLTUTILIZATION MIN CKT MAX FUSE/ WATTS CMOPR CKT 2 CKT 2 MTR 1A MTR 2A CMPR COMPR COMPR COMPR COMPR COMPR COMPR COMPR COMPR CHARGE MTR 1B MTR 2B CHARGE COMPR COMPR CKT 1 (LBS) CKT 1 (LBS) CKT 1 (GAL) PRED CKT 2 (LBS) CKT 2 (GAL) CONTROLED CMT HP EA FLA EA YED MOTORS SIDE INSTALLATION, OPERATION * PUMP CMT HP EA FLA EA VIRING DIAGRAM BOOK INSTALLATION, OPERATION * PUMP MOTORS VIRING DIAGRAM BOOK INSTALLATION, OPERATION * EXCLUSIVELY		
COMPR COMPR COMPR MTR 1A MTR 2A REFRIGERANT COMPR COMPR REFRIGERANT COMPR MTR 2B REFRIGERANT COMPR COMPR COMPR COMPR MTR 2B REFRIGERANT COMPR COMPR COMPR COMPR COMPR COMPR COMPR COMPR COMPR OTY HP EA FLA EA FAN MOTORS CKT 1 (LBS) CKT 1 (GAL) 2 SPEED CKT 2 (LBS) CKT 2 (GAL) 2 SPEED COMPR CKT 2 (LBS) CKT 2 (GAL) CONTORS CMT HP EA FLA EA VFD INPUT AMPS * PUMP CMT HP EA FLA EA VFD INPUT AMPS * PUMP CMT HP EA FLA EA VFD INPUT AMPS * PUMP EXCLUSIVELY INTERLOCKED INSTALLATION, OPERATION * MANUTERANCE MANUTENANCE MANUAL INSTALLATION, OPERATION * EXCLUSIVELY INTERLOCKED SUMMINTENANCE MANUAL INSTALLATION, OPERATION	VOLTÄGE/HZ/PH AMPÄCITÝ (A) BŘEÁKĚŘ (A) CKT 1 CKT 1 VOLT UTILIZATION MIN CKT MAX FUSE/ RANGE AMPACITY (A) BREAKER (A) CKT 2 CKT 2	VOLTAGE/HZ/PH CKT 3 FREEZE WATTS PROTECTION HEATERS VOLT UTILIZATION RANGE WATTS
CONTROLLED OF THE FLA EA VED INPUT AMPS URING DIAGRAM BOOK INSTALLATION, OPERATION & MAINTENANCE MANUAL & KACLUSIVELY INTERLOCKED	COMPR COMPR MTR 1A MTR 2A COMPR COMPR MTR 1B MTR 2B COMPR COMPR MTR 1C MTR 2C QTY HP EA FIXED SPEED FLA EA 2 SPEED Image: Compression of the second	RFGT CHARGE OIL CHARGE TYPE/ NUMBER CKT 1 (LBS) CKT 1 (GAL)
	VED QTY HP EA FLA EA VED INPUT AMPS MTR VOLT CONTROLLED QTY HP EA FLA EA VED INPUT AMPS FAN MOTORS QTY HP EA FLA EA VED INPUT AMPS * PUMP QTY HP EA FLA EA VED INPUT AMPS * EXCLUSIVELY INTERLOCKED WIRING	HIGH LOW SIDE SIDE SIDE SIDE SIDE MAINTENANCE MANUAL
TRANE MADE IN USA X39003199010	CORRESPONDING FOREIGN PATENTS OWNED BY TRANE. 6,085,532 6,266	

В

С

р

L

Р

Unit Model Number

Digit 1-4 Chiller Model CGAM Air-Cooled Scroll

Packaged Chiller

Digit 5-7 Unit Nominal Ton

- 020 20 Tons 26 Tons 026 030 30 Tons 035 35 Tons 039 39 Tons 040 40 Tons 045 45 Tons 050 50 Tons
- 052 52 Tons
- 060 60 Tons
- 070 70 Tons
- 080 80 Tons
- 090 90 Tons
- 100 100 Tons
- 110 Tons 110 120 120 Tons

Digit 8 Unit Voltage

208 Volt 60 Hz 3 Phase 230 Volt 60 Hz 3 Phase Α В 380 Volt 60 Hz 3 Phase D 400 Volt 50 Hz 3 Phase 460 Volt 60 Hz 3 Phase F F 575 Volt 60 Hz 3 Phase G

Digit 9 Manufacturing Plant

Pueblo, USA

Digit 10-11Design Seq

- A-Z Factory/ABU Assigned
- **Digit 12 Unit Type** 2 **High Efficiency**

Digit 13 Agency Listing

No Agency Listing UL Listed to US and Α Canadian Safety Standard

Digit 14 Pressure Vessel

- Code No Pressure Code х
- Digit 15 Unit Application Wide Ambient (0 to 125F/-D 18 to 52C)

Digit 16 Refrigerant

Isolation Valves

Refrigerant Isolation Valves (Discharge Valve)

Digit 17 Seismically Rated =Not Seismically Rated Α

Unit

Digit 18 Freeze Protection (Factory-Installed Only)

With Freeze Protection

CG-SVX17C-EN

Digit 19 Insulation

- Factory Insulation All Α Cold Parts В
- Insulation for High Humidity/Low Evap Temp

Digit 20 Factory Charge

- Full Factory Refrigerant Charge (HFC-410A) 2
- Nitrogen Charge Digit 21 Evaporator

Application

- Standard Cooling A (42 to 65°F/5.5 to 18°C) В Low Temperature
 - Processing (lower than 42°F/5.5°C)
- Ice-Making hardwired interface (20 to 65°F/-7 to С 18°C)

Digit 22 Water Connection

Grooved Pipe Connection

Digit 23 Condenser Fin

- Material Lanced Aluminum Fins AD
- Lanced Aluminum Fins w/ CompleteCoat™

Digit 24 Condenser Heat Recovery

No Heat Recovery х Partial Heat Recovery w/ 1 Fan Control

Digit 25 - Not Used Х

Digit 26 Starter Type Α Across the Line Starter/

Digit 27 Incoming Power Line Connection

- Single Point Power Connection
- 2 **Dual Point Power** Connection

Digit 28 Power Line Connection Type

D

Terminal Block Conn. For Α

- Incoming Lines
- Circuit Breaker Circuit Breaker with High
- Fault Rated Control Panel

Digit 29 Enclosure Type

Water Tight (Per UL 1995 Standard)

Digit 30 Unit Operator Interface А

- Dyna-View/English
- Dyna-View/Spanish-Spain
- Dyna-View/Spanish-Mexico
- Dyna-View/French
- Е Dyna-View/German
- F Dyna-View/Dutch
- G Dyna-View/Italian
- Н Dyna-View/Japanese J
 - Dyna-View/Portuguese-Portugal
- Κ Dyna-View/Portuguese-Brazil
 - Dyna-View/Korean
- Dyna-View/Thai M Ν
 - Dyna-View/Simplified
 - Chinese Dyna-View/Traditional
 - Chinese
- R Dyna-View/Russian
- Dyna-View/Polish Т υ
 - Dyna-View/Czech Dyna-View/Hungarian
- v W Dvna-View/Greek
- Dyna-View/Romanian
- Y Z Dyna-View/Swedish

Digit 31 Remote Interface (digital comm)

- No Remote Digital Communication LonTalk/Tracer Summit
- 2 Interface
- 3 Time of Day Scheduling

Digit 32 Ext. Chilled/Hot Water and Curr. Demand Limit Setpoint Х

- No Ext. Chilled Water Setpoint
- Ext Chilled Water and Α Demand Limit Setpoint - 4-20mA
- в Ext Chilled Water and Demand Limit Setpoint - 2-10Vdc

Digit 33 Percent Capacity

- Without % Capacity
- With % Capacity

Digit 34 Programmable Relays

- No Programmable Relays х
- Δ Programmable Relays

Dual Standard Pump

Dual High Head Pump

9

Digit 35 Pump Type

No Pumps and no Х Contactors

7

8

Digit Cont	36 Pump Flow rol	Digit Pack	41 Sound Attenuator	Digit X	46 Shipping Pac No Skid (Standard)
X B	No Pump Flow Control Pump Flow Controlled by Variable Speed Drive	3 5	Super Quiet Comprehensive Acoustic Package	A	Unit Containerization Package
	37 Buffer Tank		42 Appearance	Optio	
X 1	No Tank With Tank		ons No Appearance Options Architectural Louvered	X 2 3	No Performance Tes 1 Point Test with Rep Witness 1 Point Test
Digit Ratin		A B	Panels Half Louvers	-	Report
A B	Default A Short Circuit Rating High A Short Circuit Rating	Digit	43 Exterior Finish Standard Paint	Point C	- 15
	39 — Installation ssories	Liter	: 44 Label and ature Language	F H L	35 45 60
1	No Installation Accessories Elastomeric Isolators	B D E	Spanish and English English French and English	Digit X	49 - Not Used
Digit A	40 Water Strainer With Water Strainer Factory- Installed	Digit X	: 45 - Not Used	Digit X S	5 0 Specials None Special

Note: If a digit is not defined it may be held for future use.

Compressor Nameplate

The compressor nameplate provides the following information:

- Compressor model number.
- Compressor serial number.
- Compressor electrical characteristics.
- Utilization Range.
- Recommended refrigerant.

Model Number Coding System

The model numbers for the unit and the compressors are comprised of numbers and letter which represent features of the equipment.

Each position, or group of positions, in the number is used to represent a feature. For example, Unit Voltage, contains the number "F". From the chart, it can be seen that a "F" in this position means that the unit voltage is 460/60/3.

TRANE

TRANE ®								
SCROLL COMPRESSOR								
FIELD SERVICE PART NO: (ITEM C)								
THERMALLY PROTECTED								
VOLTAGE-1 (ITEM D) VOLTAGE-2 (ITEM E) MAX AMPS (ITEM F) LRA (ITEM G)								
LUBRICANT POLYOLESTER OIL USE TRANE OIL ONLY OIL00079 OR OIL0063E VOL: (ITEM H)								
REFRIGERANT: R410A								
MADE IN MEXICO XXXX								

Figure 2. CGAM Compressor Nameplate

Compressor Model Number

The compressor model number is located on the compressor nameplates.

Digit 1,2,3,4

CSHD - Light Commercial CSHN - Commercial

Digit 5,6,7 - Capacity- 60 Hz ARI Kbtu/Hr (approximate)

- (approxim 125 CSHD 161 CSHD 184 CSHN 250 CSHN 315 CSHN 374 CSHN

Digit 8 - Voltage

- J 200-230/3/60 K - 460/3/60-400/3/50 F - 230/3/50 D - 575/3/60 X - 380/3/60

Digit 9 – Unloading

(0 - no unloading)

Digit 10 – Design Sequence

Digit 11 – Protection Module Voltage 0- Int Line Break- CDHD A - 115 VAC B - 230 VAC H – 24 VAC K- 115/230 VAC -CSHN

Digit 12 - Basic **Compressor Variation** M - Suction & Discharge Tube, oil equalizer with seal nut, Grade 32 POE oil

General Information

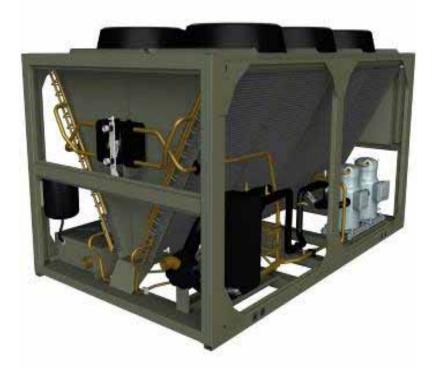
Unit Description

The CGAM units are scroll type, air-cooled, liquid chillers, designed for installation outdoors. The 20-35 ton units have a single independent refrigerant circuit, with two compressors per circuit. The 40 ton and larger units have 2 independent refrigerant circuits, with two compressors per circuit. The CGAM units are packaged with an evaporator and condenser.

Note: Each CGAM unit is a completely assembled, hermetic package that is factory-piped, wired, leak-tested, dehydrated, charged and tested for proper control operations prior to shipment. The chilled water inlet and outlet openings are covered for shipment.

The CGAM series features Trane's exclusive Adaptive Control logic with CH530 controls. It monitors the control variables that govern the operation of the chiller unit. Adaptive Control logic can correct these variables, when necessary, to optimize operational efficiencies, avoid chiller shutdown, and keep producing chilled water.

Each refrigerant circuit is provided with filter, sight glass, electronic expansion valve, and charging valves on the CGAM.


The evaporator is a brazed plate heat exchanger which is equipped with a water drain and vent connections in the water piping. The condenser is an air-cooled slit fin coil.

The condensers are available in three configurations depending on the tonnage of the unit. Units may be referred to the size by the condenser configuration. The three configurations are slant, V and W.

Figure 3. CGAM Slant 20-35 Ton Configuration

Figure 4. CGAM "V" 40-70 Ton Configuration

Figure 5. CGAM "W" 80-120 Ton Configuration

Accessory/Options Information

Check all the accessories and loose parts which are shipped with the unit against the original order. Included in these items will be water vessel drain plugs, rigging diagrams, electrical diagrams, and service literature, which are placed inside the control panel and/ or starter panel for shipment. Also check for optional components, such as isolators.

The unit isolators and fan prop rod ship on brackets attached to the frame of the unit. The location varies by unit tonnage. The following figures show the location of these ship with items for the different sizes.

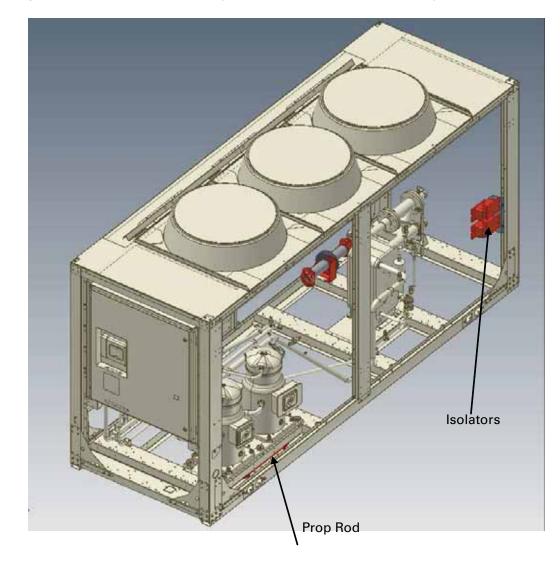


Figure 6. Slant 20 -35 Ton - Ship with Location - Isolator and Prop Rod

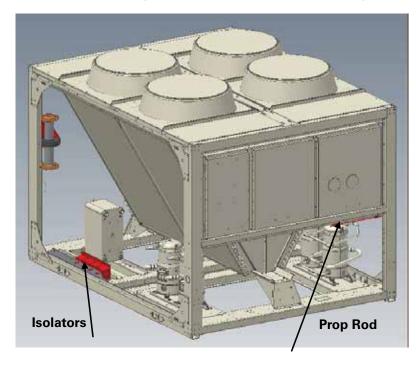
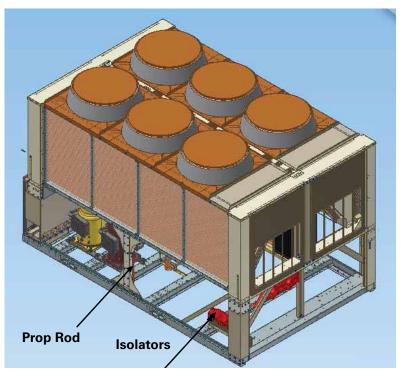



Figure 7. V 40-70 Ton - Ship with Location - Isolators and Prop Rod

Figure 8. W 80-120 Ton - Ship with Location - Isolators and Prop Rod

General Data Tables

Table 1. General Data – 60 Hz – I-P

Size		20	26	30	35	40	52	60	70	80	90	100	110	120
Compressor														
Number	#	2	2	2	2	4	4	4	4	4	4	4	4	4
Tonnage/circuit ¹		10+10	13+13	15+15	15+20	10+10	13+13	15+15	15+20	20+20	20+25	25+25	25+30	30+30
Evaporator														
Water storage	(gal)	1.4	2.2	2.2	3.2	2.4	4.1	5.0	7.5	7.0	9.0	10.3	11.5	11.5
Min. flow ²	(gpm)	24	30	34	40	46	59	68	80	92	103	116	126	136
Max. flow ²	(gpm)	69	89	100	117	136	176	201	238	275	307	346	375	407
Water connection	(in)	2	2.5	2.5	2.5	3	3	3	3	4	4	4	4	4
Condenser														
Quantity of coils	#	1	1	1	1	2	2	2	2	4	4	4	4	4
Coil length	(in)	91	91	127	127	91	91	127	127	121	121	144	144	144
Coil height	(in)	68	68	68	68	68	68	68	68	42	42	42	42	42
Number of rows	#	2	2	2	2	2	2	2	2	3	3	3	3	3
Fins per foot	(fpf)	192	192	192	192	192	192	192	192	192	192	192	192	192
Fan														
Quantity	#	2	2	3	3	4	4	6	6	6	6	8	8	8
Diameter	(in)	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8
Airflow per fan	(cfm)	9413	9420	9168	9173	9413	9420	9168	9173	9470	9472	9094	9096	9098
Power per motor	(kW)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Motor RPM	(rpm)	840	840	840	840	840	840	840	840	840	840	840	840	840
Tip speed	(ft/ min)	6333	6333	6333	6333	6333	6333	6333	6333	6333	6333	6333	6333	6333
General Unit														
Refrig circuits	#	1	1	1	1	2	2	2	2	2	2	2	2	2
Capacity steps	%	50-100	50-100	50-100	43-100	25-50- 75-100	25-50- 75-100	25-50- 75-100	21-43- 71-100	25-50- 75-100	22-44- 72-100	25-50- 75-100	23-45- 73-100	25-50- 75-100
Refrig charge/ circuit ¹	(lbs)	34	34	48	48	32	32	48	48	74	74	90	86	86
Oil charge/circuit ¹	(gal)	1.7	1.7	3.5	3.7	1.7	1.7	3.5	3.7	3.8	4.0	4.1	4.3	4.4
Min ambient														
Wide ambient	(°F)	0	0	0	0	0	0	0	0	0	0	0	0	0

Data shown for circuit one only. The second circuits always matches.
 Flow limits are for water only.

Size		20	26	30	35	40	52	60	70	80	90	100	110	120
Compressor														
Number	#	2	2	2	2	4	4	4	4	4	4	4	4	4
Tonnage/circuit ¹		10+10	13+13	15+15	15+20	10+10	13+13	15+15	15+20	20+20	20+25	25+25	25+30	30+30
Evaporator														
Water storage	(I)	5.3	8.3	8.3	12.1	9.1	15.5	18.9	28.4	26.5	34.1	39.0	43.5	43.5
Min. flow ²	(l/s)	1.5	1.9	2.1	2.5	2.9	3.7	4.2	5.0	5.8	6.5	7.3	7.9	8.6
Max. flow ²	(l/s)	4.4	5.6	6.3	7.4	8.6	11.1	12.7	15.1	17.4	19.4	21.9	23.7	25.7
Water connection	(mm)	50.8	63.5	63.5	63.5	76.2	76.2	76.2	76.2	101.6	101.6	101.6	101.6	101.6
Condenser														
Qty of coils	#	1	1	1	1	2	2	2	2	4	4	4	4	4
Coil length	(mm)	2311	2311	3226	3226	2311	2311	3226	3226	3073	3073	3658	3658	3658
Coil height	(mm)	1727	1727	1727	1727	1727	1727	1727	1727	1067	1067	1067	1067	1067
Number of rows	#	2	2	2	2	2	2	2	2	3	3	3	3	3
Fins per foot	(fpf)	192	192	192	192	192	192	192	192	192	192	192	192	192
Fan														
Quantity/circuit ¹	#	2	2	3	3	2	2	3	3	2	3	4	4	4
Diameter	(mm)	732	732	732	732	732	732	732	732	732	732	732	732	732
Airflow per fan	(m³/ h)	15993	16005	15577	15585	15993	16005	15577	15585	16090	16093	15451	15454	15458
Power per motor	(kW)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Motor RPM	(rpm)	840	840	840	840	840	840	840	840	840	840	840	840	840
Tip speed	(m/s)	32	32	32	32	32	32	32	32	32	32	32	32	32
General Unit														
Refrig circuits	#	1	1	1	1	2	2	2	2	2	2	2	2	2
Capacity steps	%	50-100	50-100	50-100	43-100	25-50- 75-100	25-50- 75-100	25-50- 75-100	21-43- 71-100	25-50- 75-100	22-44- 72-100	25-50- 75-100	23-45- 73-100	25-50- 75-100
Refrig charge/ circuit ¹	(kg)	15.4	15.4	21.8	21.8	14.5	14.5	21.8	21.8	33.6	33.6	40.9	39.0	39.0
Oil charge /circuit ¹	(I)	6.4	6.4	13.2	14.0	6.4	6.4	13.2	14.0	14.4	15.1	15.5	16.3	16.7
Min ambient														
Wide ambient	(°C)	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18

Table 2. General Data – 60 Hz – SI

Data shown for circuit one only. The second circuit always matches.
 Flow limits are for water only.

General Information

Table 3. General Data – 50 Hz – I-P

Size		20	26	30	35	40	52	60	70	80	90	100	110	120
Compressor														
Number	#	2	2	2	2	4	4	4	4	4	4	4	4	4
Tonnage/circuit ¹		10+10	13+13	15+15	15+20	10+10	13+13	15+15	15+20	20+20	20+25	25+25	25+30	30+30
Evaporator														
Water storage	(gal)	1.4	2.2	2.2	3.2	2.4	4.1	5.0	7.5	7.0	9.0	10.3	11.5	11.5
Min. flow ²	(gpm)	20	26	29	33	39	50	57	67	79	88	99	107	114
Max. flow ²	(gpm)	59	75	85	98	115	149	170	199	234	262	296	319	341
Water connection	(in)	2	2.5	2.5	2.5	3	3	3	3	4	4	4	4	4
Condenser		-												
Quantity of coils	#	1	1	1	1	2	2	2	2	4	4	4	4	4
Coil length	(in)	91	91	127	127	91	91	127	127	121	121	144	144	144
Coil height	(in)	68	68	68	68	68	68	68	68	42	42	42	42	42
Number of rows	#	2	2	2	2	2	2	2	2	3	3	3	3	3
Fins per foot	(fpf)	192	192	192	192	192	192	192	192	192	192	192	192	192
Fan														
Quantity	#	2	2	3	3	4	4	6	6	6	6	8	8	8
Diameter	(in)	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8
Airflow/fan	(cfm)	7796	7783	7587	7590	7795	7801	7587	7590	7827	7829	7503	7505	7506
Power/motor	(kW)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Motor RPM	(rpm)	700	700	700	700	700	700	700	700	700	700	700	700	700
Tip speed	(ft/ min)	5278	5278	5278	5278	5278	5278	5278	5278	5278	5278	5278	5278	5278
General Unit														
Refrig circuits	#	1	1	1	1	2	2	2	2	2	2	2	2	2
Capacity steps	%	50-100	50-100	50-100	43-100	25-50- 75-100	25-50- 75-100	25-50- 75-100	21-43- 71-100	25-50- 75-100	22-44- 72-100	25-50- 75-100	23-45- 73-100	25-50- 75-100
Refrig charge/ circuit ¹	(lbs)	34	34	48	48	32	32	48	48	74	74	90	86	84
Oil charge/circuit ¹	(gal)	1.7	1.7	3.5	3.7	1.7	1.7	3.5	3.7	3.8	4.0	4.1	4.3	4.4
Min ambient														
Wide ambient	(°F)	0	0	0	0	0	0	0	0	0	0	0	0	0

Data shown for circuit one only. The second circuit always matches.
 Flow limits are for water only.

General Information

Size		20	26	30	35	40	52	60	70	80	90	100	110	120
Compressor														
Number	#	2	2	2	2	4	4	4	4	4	4	4	4	4
Tonnage/circuit ¹		10+10	13+13	15+15	15+20	10+10	13+13	15+15	15+20	20+20	20+25	25+25	25+30	30+30
Evaporator														
Water storage	(I)	5.3	8.3	8.3	12.1	9.1	15.5	18.9	28.4	26.5	34.1	39.0	43.5	43.5
Min. flow ²	(l/s)	1.2	1.6	1.8	2.1	2.4	3.1	3.6	4.2	4.9	5.5	6.2	6.7	7.2
Max. flow ²	(l/s)	3.7	4.8	5.4	6.2	7.3	9.4	10.8	12.6	14.8	16.5	18.7	20.2	21.6
Water connection	(mm)	50.8	63.5	63.5	63.5	76.2	76.2	76.2	76.2	101.6	101.6	101.6	101.6	101.6
Condenser														
Quantity of coils	#	1	1	1	1	2	2	2	2	4	4	4	4	4
Coil length	(mm)	2311	2311	3226	3226	2311	2311	3226	3226	3073	3073	3658	3658	3658
Coil height	(mm)	1727	1727	1727	1727	1727	1727	1727	1727	1067	1067	1067	1067	1067
Number of rows	#	2	2	2	2	2	2	2	2	3	3	3	3	3
Fins per foot	(fpf)	192	192	192	192	192	192	192	192	192	192	192	192	192
Fan														
Quantity	#	2	2	3	3	4	4	6	6	6	6	8	8	8
Diameter	(mm)	732	732	732	732	732	732	732	732	732	732	732	732	732
Airflow/fan	(m³/ h)	13245	13223	12890	12895	13244	13254	12890	12895	13298	13302	12748	12751	12753
Power/motor	(kW)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Motor RPM	(rpm)	700	700	700	700	700	700	700	700	700	700	700	700	700
Tip speed	(m/s)	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8
General Unit														
Refrig circuits	#	1	1	1	1	2	2	2	2	2	2	2	2	2
Capacity steps	%	50-100	50-100	50-100	43-100	25-50- 75-100	25-50- 75-100	25-50- 75-100	21-43- 71-100	25-50- 75-100	22-44- 72-100	25-50- 75-100	23-45- 73-100	25-50- 75-100
Refrig charge/ circuit ¹	(kg)	15.4	15.4	21.8	21.8	14.5	14.5	21.8	21.8	33.6	33.6	40.9	39.0	38.1
Oil charge/circuit 1	(I)	6.4	6.4	13.2	14.0	6.4	6.4	13.2	14.0	14.4	15.1	15.5	16.3	16.7
Min ambient														
Wide ambient	(°C)	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18

Table 4. General Data – 50 Hz – SI

Data shown for circuit one only. The second circuit always matches.
 Flow limits are for water only.

Pre-Installation

Inspection Checklist

When the unit is delivered, verify that it is the correct unit and that it is properly equipped. Compare the information which appears on the unit nameplate with the ordering and submittal information.

Inspect all exterior components for visible damage. Report any apparent damage or material shortage to the carrier and make a "unit damage" notation on the carrier's delivery receipt. Specify the extent and type of damage found and notify the appropriate Trane Sales Office.

Do not proceed with installation of a damaged unit without sales office approval.

To protect against loss due to damage incurred in transit, complete the following checklist upon receipt of the unit.

- Inspect the individual pieces of the shipment before accepting the unit. Check for obvious damage to the unit or packing material.
- Inspect the unit for concealed damage as soon as possible after delivery and before it is stored. Concealed damage must be reported within 15 days.
- If concealed damage is discovered, stop unpacking the shipment. Do not remove damaged material from the receiving location. Take photos of the damage, if possible. The owner must provide reasonable evidence that the damage did not occur after delivery.
- Notify the carrier's terminal of the damage immediately, by phone and by mail. Request an immediate, joint inspection of the damage with the carrier and the consignee.
- Notify the Trane sales representative and arrange for repair. Do not repair the unit, however, until damage is inspected by the carrier's representative.

Unit Storage

If the chiller is to be stored in ambients of 32°F or less, evaporator should be blown out to remove any liquid and refrigerant isolation valves should be closed.

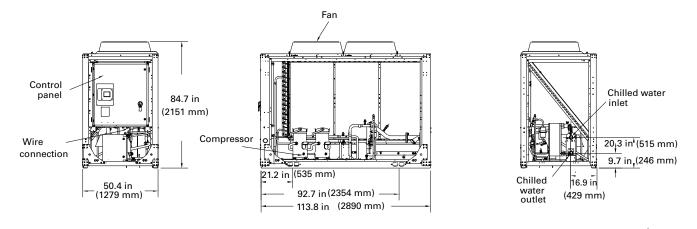
If the chiller is to be stored for more than one month prior to installation, observe the following precautions:

- Do not remove the protective coverings from the electrical panel.
- Store the chiller in a dry, vibration-free, secure area.
- Units charged with refrigerant should not be stored where temperatures exceed 155°F.
- At least every three months, attach a gauge and manually check the pressure in the refrigerant circuit. If the refrigerant pressure is below 200 psig at 70 F (or 145 psig at 50 F), call a qualified service organization and the appropriate Trane sales office.

Note: Pressure will be approximately 20 psig if shipped with the optional nitrogen charge.

Installation Requirements

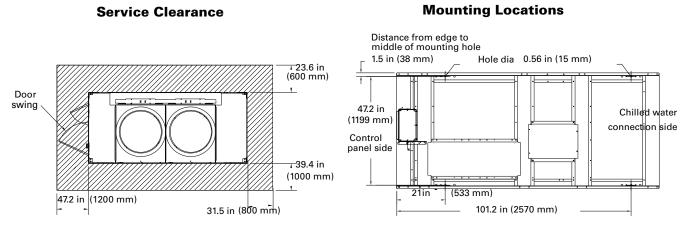
A list of the contractor responsibilities typically associated with the unit installation process is provided.


Type of Requirement	Trane Supplied Trane Installed	Trane Supplied Field Installed	Field Supplied Field Installed
Foundation			Meet foundation requirements
Rigging			 Safety chains Clevis connectors Lifting beam
Isolation		 Elastomeric isolators (optional) 	Elastomeric isolators (optional)
Electrical	 Circuit breakers (optional) Unit mounted starter 		 Circuit breakers (optional) Electrical connections to unit mounted starter Wiring sizes per submittal and NEC Terminal lugs Ground connection(s) BAS wiring (optional) Control voltage wiring Chilled water pump contactor and wiring including interlock Option relays and wiring
Water piping	Flow switchWater strainer		 Taps for thermometers and gauges Thermometers Water flow pressure gauges Isolation and balancing valves in water piping Vents and drain Pressure relief valves
Insulation	 Insulation High humidity insulation (optional) 		Insulation
Water Piping Connection Components	Grooved pipe		
Other Materials	 R-410A refrigerant (1 lb. maximum per machine as needed) Dry nitrogen (20 psig maximum per machine as needed) 		

Unit Dimensions/Weights

Dimensions

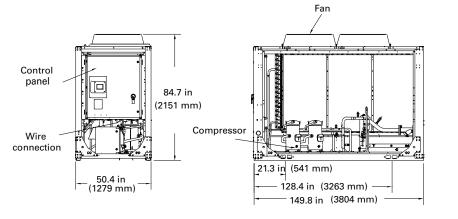
Figure 9. CGAM 20 and 26 ton - no options



Water connections are 1.7 in (44 mm) from the end.

Figure 10. CGAM 20 and 26 ton - service clearances and mounting locations

More clearance may be needed for airflow


depending on the installation.

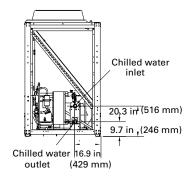
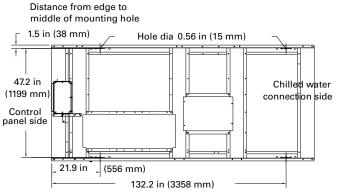

Total of four mounting locations.

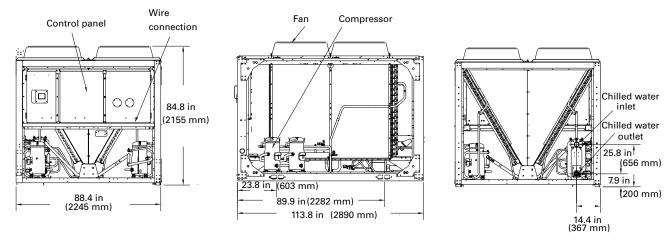
Figure 11. CGAM 30 and 35 ton - no options

The number of fans shown does not represent the number of fans installed.

Water connections are 1.6 in (40 mm) from unit end.


Figure 12. CGAM 30 and 35 ton - service clearances and mounting locations

The number of fans shown does not represent the number of fans installed.


Service Clearance

More clearance may be needed for airflow depending on the installation.

Mounting Locations

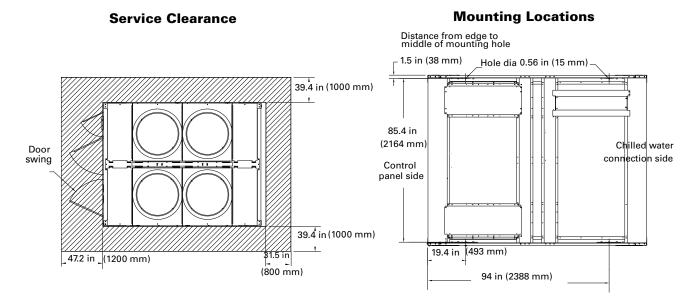
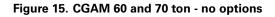
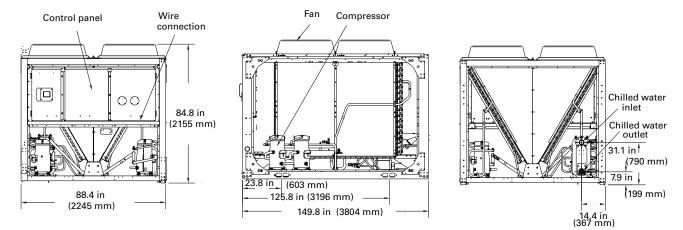

Total of four mounting locations.

Figure 13. CGAM 40 and 52 ton- no options

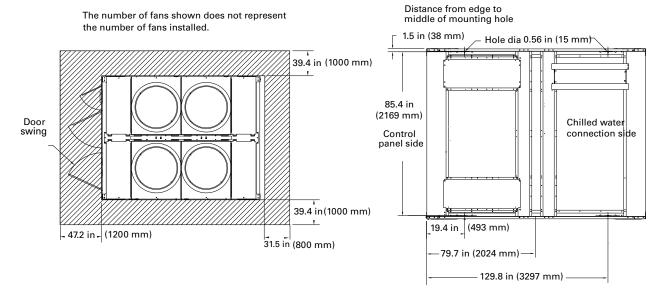
Water connections are even with unit end.


Figure 14. CGAM 40 and 52 ton- service clearances and mounting locations



More clearance may be needed for airflow depending on the installation.

Total of four mounting locations.


The number of fans shown does not represent the number of fans installed.

Water connections are even with unit end.

Figure 16. CGAM 60 and 70 ton - service clearances and mounting locations

Service Clearance

Mounting Locations

More clearance may be needed for airflow depending on the installation.

Total of six mounting locations.

Figure 17. CGAM 80 and 90 ton - no options

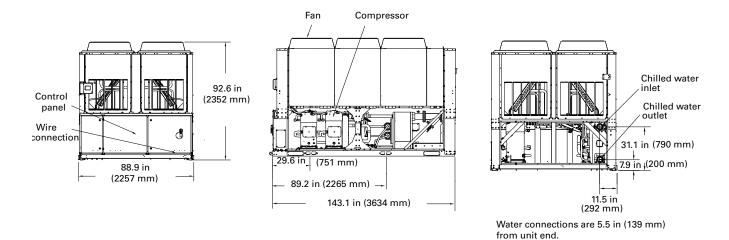
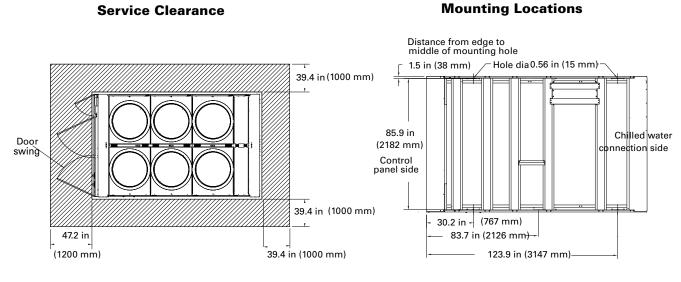
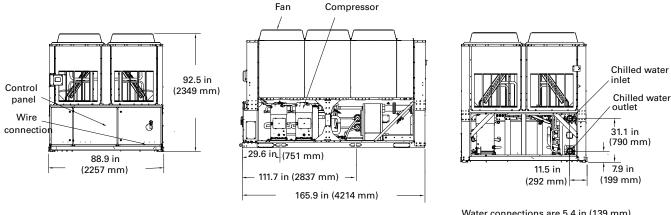



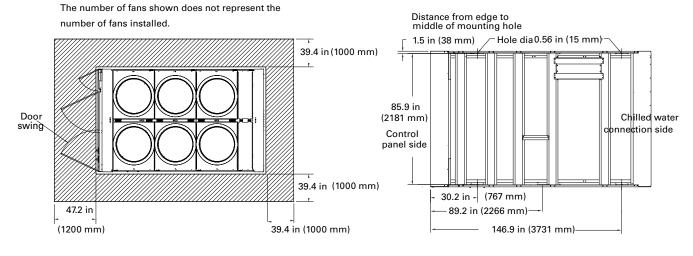
Figure 18. CGAM 80 and 90 ton - service clearances and mounting locations



More clearance may be need for airflow depending on the installation.

Total of six mounting location.

Figure 19. CGAM 100, 110 and 120 ton- no options

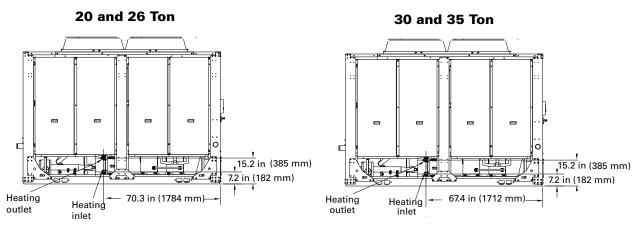

The number of fans shown does not represent the number of fans installed.

Water connections are 5.4 in (139 mm) from unit end.

Figure 20. CGAM 100, 110 and 120 ton- service clearances and mounting locations

Service Clearance

Mounting Locations



More clearance may be needed for airflow depending on the installation.

Total of six mounting locations.

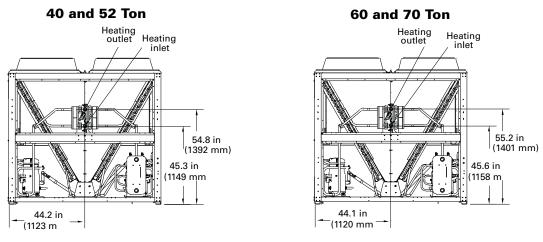

Partial Heat Recovery - Water Connections

Figure 21. Sizes 20 - 35 ton - Partial Heat Recovery - Water Connections

Partial heat recovery connections are even with the unit edge. The number of fans shown does not represent the number of fans installed.

Figure 22. Sizes 40-70 ton - Partial Heat Recovery - Water Connections

Partial heat recovery connections are even with the unit edge. The number of fans shown does not represent the number of fans installed.

Weights

Tons	Shippin	g Weight	Operatir	ng Weight	
TONS	pounds	kilograms	pounds	kilograms	
20	1967	892	2030	921	
26	1995	905	2060	934	
30	2561	1162	2629	1192	
35	2580	1170	2654	1204	
40	3507	1591	3578	1623	
52	3584	1626	3666	1663	
60	4640	2105	4730	2145	
70	4656	2112	4751	2155	
80	5278	2394	5384	2442	
90	5637	2557	5746	2606	
100	6283	2850	6401	2903	
110	6328	2870	6461	2931	
120	6328	2870	6461	2931	

Table 5. Weights - 60 Hz

Weights based on aluminum fins.
 Weights do not include louvers, partial heat recovery, etc.
 All weights ±5%.

Table 6. Weights - 50 Hz

Tons	Shippin	g Weight	Operatii	ng Weight
Tons	pounds	kilograms	pounds	kilograms
20	1893	859	1955	887
26	1920	871	1985	900
30	2363	1072	2431	1103
35	2481	1125	2554	1158
40	3357	1523	3428	1555
52	3433	1557	3515	1594
60	4301	1951	4391	1992
70	4458	2022	4554	2066
80	5028	2281	5134	2329
90	5386	2443	5495	2492
100	5834	2646	5953	2700
110	6077	2756	6210	2817
120	6077	2756	6210	2817

Weights based on aluminum fins.
 Weights do not include louvers, partial heat recovery, etc.
 All weights ±5%.

Installation - Mechanical

Location Requirements

Sound Considerations

- Refer to *Trane Engineering Bulletin Chiller Sound Ratings and Installation Guide* CG-PRB010-EN for sound consideration applications.
- Locate the unit away from sound-sensitive areas.
- Install the optional elastomeric isolators under the unit. Refer to "Unit Isolation."
- Chilled water piping should not be supported by chiller frame.
- Install rubber vibration isolators in all water piping.
- Seal all wall penetrations.

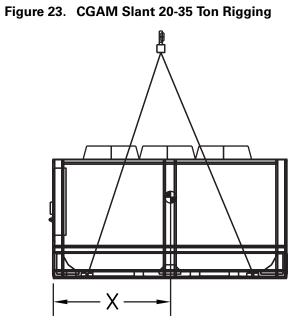
Note: Consult an acoustical engineer for critical applications.

Foundation

Provide rigid, non-warping mounting pads or a concrete foundation of sufficient strength and mass to support the applicable operating weight (i.e., including completed piping, and full operating charges of refrigerant, oil and water). Refer to the chapter on "Unit Dimensions/Weights" for unit operating weights. Once in place, the unit must be level within 1/4" (6.4 mm) over its length and width. The Trane Company is not responsible for equipment problems resulting from an improperly designed or constructed foundation.

Clearances

Provide enough space around the unit to allow the installation and maintenance personnel unrestricted access to all service points. Refer to submittal drawings for the unit dimensions, to provide sufficient clearance for the opening of control panel doors and unit service. Refer to the chapter on "Unit Dimensions/Weights" for minimum clearances. In all cases, local codes which require additional clearances will take precedence over these recommendations.


Rigging

Refer to Unit Dimensions/Weights section for typical unit lifting weights. Refer to the rigging label attached to the unit for further details.

Lifting Procedure

Attach chains or cables to lifting beam, as shown in the following figures. Lifting beam crossbars **MUST** be positioned so lifting cables do not contact the sides of the unit. Adjust as necessary for even level lift.

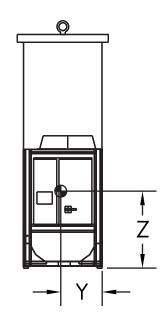


Figure 24. CGAM V 40-70 Ton Rigging

Ζ

Figure 25. CGAM W 80-120 Ton Rigging

Table 7. CGAM Center of Gravity (in) - 60 Hz

Unit	х	Y	Z
20 ton	48	24	37
26 ton	49	24	37
30 ton	57	22	37
35 ton	59	22	36
40 ton	46	45	33
52 ton	48	46	32
60 ton	58	45	36
70 ton	60	45	36
80 ton	59	44	35
90 ton	58	44	36
100 ton	71	47	38
110 ton	72	47	38
120 ton	72	47	38

Unit	Х	Y	Z	
20 ton	48	25	38	
26 ton	49	25	38	
30 ton	57	23	36	
35 ton	60	23	37	
40 ton	47	45	33	
52 ton	49	46	33	
60 ton	59	45	36	
70 ton	61	45	37	
80 ton	60	44	36	
90 ton	59	44	36	
100 ton	72	47	37	
110 ton	73	47	39	
120 ton	73	47	39	

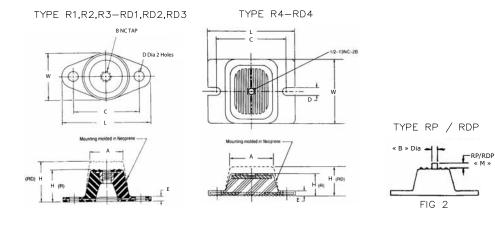
Table 8. CGAM Center of Gravity (in) - 50 Hz

Unit Isolation and Leveling

Mounting

Construct an isolated concrete pad for the unit or provide concrete footings at each of the four unit mounting points. Mount the unit directly to the concrete pads or footings.

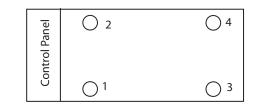
Level the unit using the base rail as a reference. The unit must be level within 1/4'' over the entire length. Use shims as necessary to level the unit.

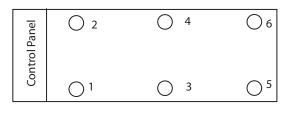

Elastomeric Isolator Installation (optional)

Install the optional neoprene isolators at each mounting location. Isolators are identified by part number and color.

- 1. Secure the isolators to the mounting surface, using the mounting slots in the isolator base plate, as shown in Figure 26. Do not fully tighten the isolator mounting bolts at this time.
- 2. Align the mounting holes in the base of the unit, with the threaded positioning pins on the top of the isolators.
- 3. Lower the unit on to the isolators and secure the isolator to the unit with a nut. Maximum isolator deflection should be approximately 1/4".
- 4. Level the unit carefully. Refer to "Leveling". Fully tighten the isolator mounting bolts.

EXT	Max. Load each (Lbs)	Deflection in Inches	Fig	A	В	С	D	E	Н	L	М	W	Туре	Color
57	250													BLACK
58	525	0.50	2	2 50	0.50	1 12	0.56	0.25	2 00	5 50	1 1 2	2 20	RDP3-WR	RED
59	750	0.50	~	2.50	0.50	4.12	0.50	0.25	2.00	5.50	1.13	5.50	KDF 3- WK	GREEN
60	1100													GRAY
61	1500													BROWN
62	2250	0.50	2	3 00	0.50	5 00	0.56	0.38	2 75	6 25	1.60+/25	4 63	RDP4-WR-	RED
63	3000	0.50	2	5.00	0.50	5.00	0.50	0.50	2.75	0.25	1.00 1725	7.05		GREEN
64	4000	Ī												GRAY


Figure 26. CGAM Elastomeric Isolator



Mounting Point Locations and Weights

Figure 27. Mounting Point Locations

Table 9. Isolator Locations

. .

Size	location1	location 2	location 3	loacation4	location 5	location 6
20-26 ton	RDP-3 Grey 60	RDP-3 Grey 60	RDP-3 Grey 60	RDP-3 Grey 60	-	-
30-35 ton	RDP-4 Black 61	RDP-4 Black 61	RDP-3 Grey 60	RDP-3 Grey 60	-	-
40-52 ton	RDP-4 Red 62	RDP-4 Red 62	RDP-4 Red 62	RDP-4 Red 62	-	-
60-70 ton	RDP-4 Red 62	RDP-4 Red 62	RDP-3 Gray 60	RDP-3 Gray 60	RDP-3 Gray 60	RDP-3 Gray 60
80-120 ton	RDP-4 Red 62	RDP-4 Red 62	RDP-4 Red 62	RDP-4 Red 62	RDP-3 Gray 60	RDP-3 Gray 60

Table 10. Point Weights (lbs) - 60 Hz

Size	location 1	location 2	location 3	location 4	location5	location 6
20 ton	667	666	350	349	-	-
23 ton	656	654	360	358	-	-
26 ton	667	658	371	366	-	-
30 ton	990	804	463	375	-	-
35 ton	981	792	487	397	-	-
40 ton	1102	1161	639	680	-	-
52 ton	1081	1161	686	742	-	-
60 ton	1106	1176	800	849	391	414
70 ton	1200	1113	765	704	334	641
80 ton	1337	1644	900	749	416	344
90 ton	1599	1654	820	846	411	423

Installation - Mechanical

Table 10. Point Weights (lbs) - 60 Hz

Size	location 1	location 2	location 3	location 4	location5	location 6
100 ton	1386	1775	853	1042	738	615
110 ton	1378	1785	856	1062	750	638
120 ton	1378	1785	856	1062	750	638

Table 11. Point Weights (lbs) - 50 Hz

Size	location 1	location 2	location 3	location 4	location5	location 6
20 ton	623	648	337	349	-	-
26 ton	623	640	358	366	-	-
30 ton	899	758	422	355	-	-
35 ton	920	766	472	399	-	-
40 ton	952	1179	714	587	-	-
52 ton	933	1177	759	650	-	-
60 ton	890	1154	848	767	388	349
70 ton	980	1125	859	667	361	567
80 ton	1348	1389	828	856	353	366
90 ton	1493	1548	799	826	412	424
100 ton	1241	1757	793	763	718	688
110 ton	1286	1677	823	1034	748	649
120 ton	1286	1677	823	1034	748	649

Evaporator Piping

Evaporator water connections are grooved.

Thoroughly flush all water piping to the CGAM unit before making the final piping connections to the unit.

Components and layout will vary slightly, depending on the location of connections and the water source.

▲ CAUTION Equipment Damage!

If using an acidic commercial flushing solution, construct a temporary bypass around the unit to prevent damage to internal components of the evaporator and the pump.

A CAUTION Proper Water Treatment!

The use of untreated or improperly treated water in a Chiller may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

Drainage

Locate the unit near a large capacity drain for water vessel drain-down during shutdown or repair. Evaporators are provided with drain connections. Refer to "Water Piping." All local and national codes apply.

A vent is provided on the top of the evaporator at the chilled water inlet. Be sure to provide additional vents at high points in the piping to bleed air from the chilled water system. Install necessary pressure gauges to monitor the entering and leaving chilled water pressures.

Provide shutoff valves in lines to the gauges to isolate them from the system when they are not in use. Use rubber vibration eliminators to prevent vibration transmission through the water lines.

If desired, install thermometers in the lines to monitor entering and leaving water temperatures. Install a balancing valve in the leaving water line to control water flow balance. Install shutoff valves on both the entering and leaving water lines so that the evaporator can be isolated for service.

Evaporator Piping Components

Piping components include all devices and controls used to provide proper water system operation and unit operating safety. These components are listed below.

Entering Chilled Water Piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Vibration eliminators
- Shutoff (isolation) valves
- Thermometers (if desired)
- Relief valve

Leaving Chilled Water Piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Vibration eliminators
- Shutoff (isolation) valves
- Thermometers (if desired)
- Balancing valve

NOTICE

Water Damage!

Standard pressure is 72.5 Psig for all factory installed components on the suction side of water pump. Standard pressure of components on the discharge side of water pump is 145 Psig. You MUST drain the system FIRST before releasing the pressure. Failure to do so could result in water spray which could cause equipment and/or property damage.

Water Strainer

The water strainer is factory-installed with taps for the pressure gauges on the inlet and outlet.

Install pressure gauges in order to measure differential pressure across the filter. This will help to determine when it is necessary to clean the water strainer.

Flow Switch

The flow switch is factory-installed and programmed based on the operating conditions submitted with the order. The leaving evaporator temperature, fluid type and fluid concentration affect the selected flow switch. If the operating conditions on the job site change, the flow switch may need to be replaced.

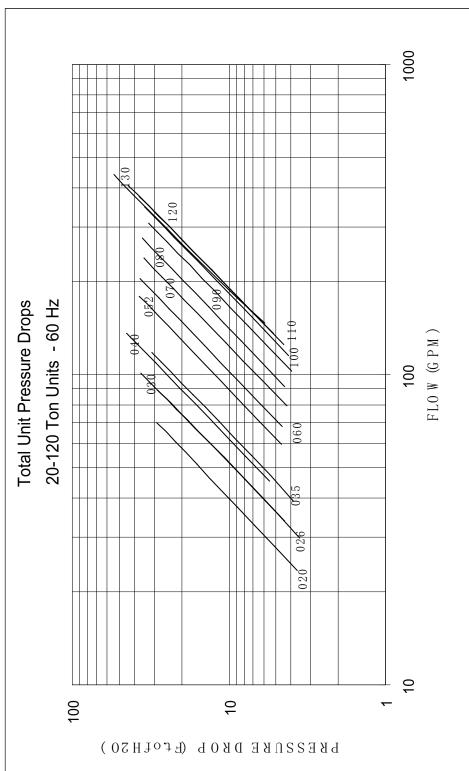


Figure 28. Total Unit Pressure Drop Curves (60Hz)

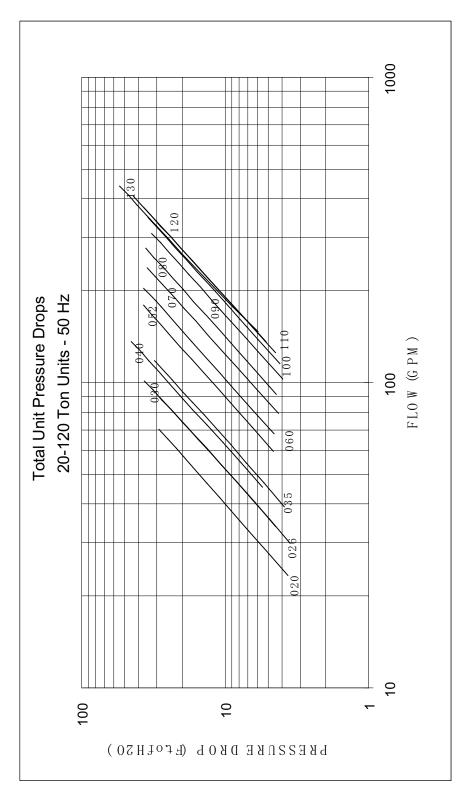


Figure 29. Total Unit Pressure Drop Curves (50 Hz)

Freeze Protection

Depending on the ambient temperature the unit may be exposed to there are up to four different options for freeze protection. They are listed in order of highest ambient (least freeze protection) to lowest ambient (most freeze protection).

- 1. Water pump (for protection with ambient temperatures down to 0°F)
 - a. CH530 controller can start the pump when the ambient temperatures drops to prevent freezing. For this option the pump must to be controlled by the CGAM unit and this function must be validated.
 - b. Water circuit valves need to stay open at all times.

OR

- 2. Heaters (for protection with ambient temperatures down to -20°F)
 - a. Heaters are factory-installed on the evaporator and water piping and will protect them from freezing in ambient temperatures down to -20°F (-29°C).
 - b. Install heat tape on all water piping, pumps, and other components that may be damaged if exposed to freezing temperatures. Heat tape must be designed for low ambient temperature applications. Heat tape selection should be based on the lowest expected ambient temperature.

OR

- 3. Freeze inhibitor with heaters
 - a. For protection with ambient temperatures **down to -20°F**:
 - i. Add a freeze inhibitor fluid to the chilled water system. The solution must be strong enough to provide protection against ice formation at the lowest anticipated ambient temperature.
 - ii. Activate the heaters and heat tape on the unit.
 - b. For protection with ambient temperatures below -20°F:
 - i. Add a freeze inhibitor fluid sufficient for burst protection at the lowest anticipated ambient temperature.
 - ii. Activate the heaters and heat tape on the unit.
 - Note: Use of a freeze inhibitor fluid reduces the cooling capacity of the unit and must be considered in the design of the system specifications.

OR

- 4. Drain water circuit (for protection with ambients below -20°F)
 - a. Shut off the power supply to the unit and to all heaters.
 - b. Purge the water circuit.
 - c. Blow out the evaporator to ensure no liquid is left in the evaporator.
- Note: By default the CH530 freeze protection control is enabled and will request the start of the chilled water pump with ambient temperatures at or below freezing. If you do NOT want the CH530 to start the pump when the ambient temperature drops to freezing, disable this freeze protection control.

NOTICE Equipment Damage!

All heaters have separate power from the unit. All heaters must be energized when the unit is off (unless the water circuit is drained). In the event of power loss heaters will not protect the evaporator from catastrophic damage. In order to provide freeze protection in the event of a power loss you MUST drain the evaporator or use sufficient freeze inhibitor in the evaporator.

Low Evap Refrigerant Cutout/Percent Glycol Recommendations

The table below shows the low evaporator temperature cutout for different glycol levels.

Additional glycol beyond the recommendations will adversely effect unit performance. The unit efficiency will be reduced and the saturated evaporator temperature will be reduced. For some operating conditions this effect can be significant.

If additional glycol is used, then use the actual percent glycol to establish the low refrigerant cutout setpoint.

		ETHYLE	ENE GLY	COL					PROPYL	ENE GLY	COL		
% Glycol	Solution Freeze Point [F]		Low Water Temp Cutout [F]	Set	hilled \ Point umber npress	[F] of	% Glycol	Solution Freeze Point [F]		Low Water Temp Cutout [F]	Se ^t N	hilled t Point umber npress	[F] of
				2	4	6					2	4	6
0	32	22	35	42	42	42	0	32	22	35	42	42	42
1	31.6	21.6	34.6	41.6	39.1	38.2	1	31.6	21.6	34.6	41.6	39.1	38.2
2	31.0	21.0	34.0	41.0	38.5	37.6	2	31.0	21.0	34.0	41.0	38.5	37.6
3	30.3	20.3	33.3	40.3	37.8	37.0	3	30.4	20.4	33.4	40.3	37.8	37.0
4	29.7	19.7	32.7	39.7	37.2	36.3	4	29.9	19.9	32.9	39.7	37.2	36.3
5	29.0	19.0	32.0	39.0	36.5	35.7	5	29.3	19.3	32.3	39.0	36.5	35.7
6	28.3	18.3	31.3	38.3	35.8	35.0	6	28.7	18.7	31.7	38.3	35.8	35.0
7	27.6	17.6	30.6	37.6	35.1	34.3	7	28.1	18.1	31.1	37.6	35.1	34.3
8	26.9	16.9	29.9	36.9	34.4	33.6	8	27.6	17.6	30.6	36.9	34.4	33.6
9	26.2	16.2	29.2	36.2	33.7	32.9	9	27.0	17.0	30.0	36.2	33.7	32.9
10	25.5	15.5	28.5	35.5	33.0	32.1	10	26.4	16.4	29.4	35.5	33.0	32.1
11	24.7	14.7	27.7	34.7	32.2	31.4	11	25.7	15.7	28.7	34.7	32.2	31.4
12	23.9	13.9	26.9	33.9	31.4	30.6	12	25.1	15.1	28.1	33.9	31.4	30.6
13	23.1	13.1	26.1	33.1	30.6	29.8	13	24.4	14.4	27.4	33.1	30.6	29.8
14	22.3	12.3	25.3	32.3	29.8	29.0	14	23.8	13.8	26.8	32.3	29.8	29.0
15	21.5	11.5	24.5	31.5	29.0	28.1	15	23.1	13.1	26.1	31.5	29.0	28.1
16	20.6	10.6	23.6	30.6	28.1	27.2	16	22.4	12.4	25.4	30.6	28.1	27.2
17	19.7	9.7	22.7	29.7	27.2	26.3	17	21.6	11.6	24.6	29.7	27.2	26.3
18	18.7	8.7	21.7	28.7	26.2	25.4	18	20.9	10.9	23.9	28.7	26.2	25.4
19	17.8	7.8	20.8	27.8	25.3	24.5	19	20.1	10.1	23.1	27.8	25.3	24.5

Table 12. Low Evap Refrigerant Temp Cutout and Low Water Temp Cutout

	ETHYLENE GLYCOL						PROPYLENE GLYCOL						
% Glycol	Solution Freeze Point [F]	•	Low Water Temp Cutout [F]	Set Ni	hilled \ Point umber npress	[F] of	% Glycol	Solution Freeze Point [F]	•	Low Water Temp Cutout [F]	Set N	hilled \ t Point umber mpress	[F] of
				2	4	6					2	4	6
20	16.8	6.8	19.8	26.8	24.3	23.5	20	19.3	9.3	22.3	26.8	24.3	23.5
21	15.8	5.8	18.8	25.8	23.3	22.5	21	18.4	8.4	21.4	25.8	23.3	22.5
22	14.7	4.7	17.7	24.7	22.2	21.4	22	17.6	7.6	20.6	24.7	22.2	21.4
23	13.7	3.7	16.7	23.7	21.2	20.3	23	16.7	6.7	19.7	23.7	21.2	20.3
24	12.5	2.5	15.5	22.5	20.0	19.2	24	15.7	5.7	18.7	22.5	20.0	19.2
25	11.4	1.4	14.4	21.4	18.9	18.1	25	14.8	4.8	17.8	21.4	18.9	18.1
26	10.2	0.2	13.2	20.2	17.7	16.9	26	13.8	3.8	16.8	20.2	17.7	16.9
27	9.0	-1.0	12.0	19.0	16.5	15.7	27	12.7	2.7	15.7	19.0	16.5	15.7
28	7.7	-2.3	10.7	17.7	15.2	14.4	28	11.6	1.6	14.6	17.7	15.2	14.4
29	6.4	-3.6	9.4	16.4	13.9	13.1	29	10.5	0.5	13.5	16.4	13.9	13.1
30	5.1	-4.9	8.1	15.1	12.6	11.8	30	9.3	-0.7	12.3	15.1	12.6	11.8
31	3.7	-6.3	6.7	13.7	11.2	10.4	31	8.1	-1.9	11.1	13.7	11.2	10.4
32	2.3	-7.7	5.3	12.3	10.4	10.4	32	6.8	-3.2	9.8	12.3	10.4	10.4
33	0.8	-9.2	3.8	10.8	10.4	10.4	33	5.5	-4.5	8.5	10.8	10.4	10.4
34	-0.7	-10.7	2.3	10.4	10.4	10.4	34	4.1	-5.9	7.1	10.4	10.4	10.4
35	-2.3	-12.3	0.7	10.4	10.4	10.4	35	2.7	-7.3	5.7	10.4	10.4	10.4
36	-3.9	-13.9	-0.9	10.4	10.4	10.4	36	1.3	-8.7	4.3	10.4	10.4	10.4
37	-5.6	-15.6	-2.6	10.4	10.4	10.4	37	-0.3	-10.3	2.7	10.4	10.4	10.4
38	-7.3	-17.3	-4.3	10.4	10.4	10.4	38	-1.8	-11.8	1.2	10.4	10.4	10.4
39	-9.0	-19.0	-5.0	10.4	10.4	10.4	39	-3.5	-13.5	-0.5	10.4	10.4	10.4
40	-10.8	-19.0	-5.0	10.4	10.4	10.4	40	-5.2	-15.2	-2.2	10.4	10.4	10.4
41	-12.7	-19.0	-5.0	10.4	10.4	10.4	41	-6.9	-16.9	-3.9	10.4	10.4	10.4
42	-14.6	-19.0	-5.0	10.4	10.4	10.4	42	-8.8	-18.8	-5.0	10.4	10.4	10.4
43	-16.6	-19.0	-5.0	10.4	10.4	10.4	43	-10.7	-19.0	-5.0	10.4	10.4	10.4
44	-18.6	-19.0	-5.0	10.4	10.4	10.4	44	-12.6	-19.0	-5.0	10.4	10.4	10.4
45	-20.7	-19.0	-5.0	10.4	10.4	10.4	45	-14.6	-19.0	-5.0	10.4	10.4	10.4
46	-22.9	-19.0	-5.0	10.4	10.4	10.4	46	-16.7	-19.0	-5.0	10.4	10.4	10.4
47	-25.1	-19.0	-5.0	10.4	10.4	10.4	47	-18.9	-19.0	-5.0	10.4	10.4	10.4
48	-27.3	-19.0	-5.0	10.4	10.4	10.4	48	-21.1	-19.0	-5.0	10.4	10.4	10.4
49	-29.7	-19.0	-5.0	10.4	10.4	10.4	49	-23.4	-19.0	-5.0	10.4	10.4	10.4
50	-32.1	-19.0	-5.0	10.4	10.4	10.4	50	-25.8	-19.0	-5.0	10.4	10.4	10.4
51	-34.5	-19.0	-5.0	10.4	10.4	10.4	51	-28.3	-19.0	-5.0	10.4	10.4	10.4
52	-37.1	-19.0	-5.0	10.4	10.4	10.4	52	-30.8	-19.0	-5.0	10.4	10.4	10.4
53	-39.7	-19.0	-5.0	10.4	10.4	10.4	53	-33.4	-19.0	-5.0	10.4	10.4	10.4
54	-42.3	-19.0	-5.0	10.4	10.4	10.4	54	-36.1	-19.0	-5.0	10.4	10.4	10.4
55	-45.0	-19.0	-5.0	10.4	10.4	10.4	55	-38.9	-19.0	-5.0	10.4	10.4	10.4

Table 12. Low Evap Refrigerant Temp Cutout and Low Water Temp Cutout

Partial Heat Recovery

The partial heat recovery is comprised of an auxiliary heat exchanger installed in the discharge line between the compressor and the air -cooled condenser. The heat exchanger cools compressor discharge gas and rejects the energy to a separate water loop for hot water applications. The chiller can simultaneously produce chilled and hot water.

The heating capacity is driven by the cooling demand on the chiller, the condensing temperature and the flow rate through the heat exchanger.

The partial heat recovery includes:

- Brazed plate heat exchanger
 - Units 20-35 Tons have a single braze plate heat exchanger. Units 40-120 Tons have two braze plate heat exchangers in parallel arrangement.
- Piping between the heat exchanger(s)
- Insulation of the heat exchanger(s) and water pipe
- Two temperature sensors to read the inlet/outlet hot water temperature information on the unit control display
- Heater on partial heat recovery heat exchanger(s) and water pipe
- Manual air vent
- Drain pipe

Water circulating inside the heat recovery heat exchanger should never be used for drinking water, it must be used through an indirect loop to heat or preheat hot water.

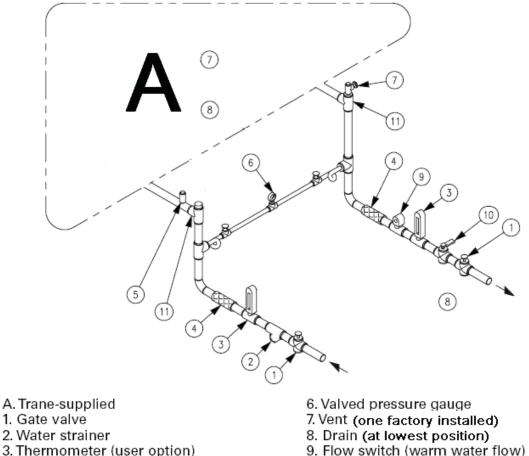
The partial heat recovery pump must run at least three minutes after the partial heat recovery fan control is disabled. During the three minutes, water flow through the brazed plate heat exchanger will gradually be reduced and the unit can be switched to conventional cooling mode without partial heat recovery fan control.

NOTICE

If the partial heat recovery heat exchanger is drained the heater must be turned off to avoid damaging the partial heater recovery heat exchanger. The heater should only be on when the heat recovery heat exchanger has water in it.

Partial Heat Recovery Piping

A field installed safety or relief valve on the water side is required with the partial heat recovery to prevent risks resulting from a failure of the thermostat.


A 16 mesh strainer must be installed close to the partial heat recovery heat exchanger entering water line to protect the heat exchanger.

The partial heat recovery water temperature should be controlled via an external devise such as a 3-way valve or variable speed pump. In addition, a water tank and additional heater is suggested in the partial heat recovery loop.

Insulate water lines and other portions of the heat recovery water loop to prevent heat loss and potential injury due exposure to a hot surface.

For recommended partial heat recovery piping see below.

Figure 30. Partial Heat Recovery Piping Recommendations

- 10.Balancing valve
- 11. Clean out tee

4. Vibration eliminator

5. Relief valve

Do not use untreated or improperly treated water in the heat recovery water loop since it will cause inefficient operation and potential damage to the unit such as: reduced heat transfer between water and refrigerant, increased water pressure drop and reduced water flow.

A CAUTION Proper Water Treatment!

The use of untreated or improperly treated water in a Chiller may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

Partial Heat Recovery Freeze Protection

The heat recovery condenser is insulated and a factory-installed heater is installed and will protect the heat exchanger from freezing in ambient temperatures down to -20°F (-29°C).

When the ambient temperature drops to approximately 39°F (3.9°C) the thermostat energizes the heaters.

Note: The inlet and outlet piping should be protected against freezing by one of the following methods:

- Install heat tape on all field-installed water piping. OR
- Add freeze inhibit fluid to the partial heat recovery water loop.

General Recommendations

All wiring must comply with local codes and the National Electric Code. Typical field wiring diagrams are included at the end of the manual. Minimum circuit ampacities and other unit electrical data are on the unit nameplate. See the unit order specifications for actual electrical data. Specific electrical schematics and connection diagrams are shipped with the unit.

▲ WARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

▲ CAUTION Use Copper Conductors Only!

Unit terminals are not designed to accept other types of conductors. Failure to use copper conductors may result in equipment damage.

Important!

Do not allow conduit to interfere with other components, structural members or equipment. Control voltage (115V) wiring in conduit must be separate from conduit carrying low voltage (<30V) wiring. To prevent control malfunctions, do not run low voltage wiring (<30V) in conduit with conductors carrying more than 30 volts.

Electrical Data Tables

Table 13. Electrical Data - 60 Hz

Unit Size	Rated Power	Number Circuits	Qty Comp	Qty Fans	Fan Motor Power (kw)	Cond Fan FLA	Compressor RLA ^{1 2}	Compressor LRA ^{1 3}
	208/60/3	1	2	2	1	6.2	39.1-39.1	267-267
	230/60/3	1	2	2	1	6.7	39.1-39.1	267-267
20	380/60/3	1	2	2	1	3.7	22.4-22.4	160-160
	460/60/3	1	2	2	1	3.2	18.6-18.6	142-142
	575/60/3	1	2	2	1	2.6	15.4-15.4	103-103
	208/60/3	1	2	2	1	6.2	50.6-50.6	315-315
	230/60/3	1	2	2	1	6.7	44.3-44.3	315-315
26	380/60/3	1	2	2	1	3.7	26.3-26.3	177-177
	460/60/3	1	2	2	1	3.2	21.2-21.2	158-158
	575/60/3	1	2	2	1	2.6	18.6-18.6	126-126
	208208/60/3	1	2	3	1	6.2	53.0-53.0	485-485
	230/60/3	1	2	3	1	6.7	50.4-50.4	485-485
30	380/60/3	1	2	3	1	3.7	31.2-31.2	210-210
	460/60/3	1	2	3	1	3.2	25.8-25.8	160-160
	575/60/3	1	2	3	1	2.6	20.6-20.6	135-135
	208/60/3	1	2	3	1	6.2	53.0-73.9	485-485
	230/60/3	1	2	3	1	6.7	50.4-67.3	485-485
35	380/60/3	1	2	3	1	3.7	31.2-39.9	210-260
	460/60/3	1	2	3	1	3.2	25.8-33.0	160-215
	575/60/3	1	2	3	1	2.6	20.6-26.4	135-175
	208/60/3	2	4	4	1	6.2	39.1-39.1	278-278
	230/60/3	2	4	4	1	6.7	39.1-39.1	278-278
40	380/60/3	2	4	4	1	3.7	22.4-22.4	177-177
	460/60/3	2	4	4	1	3.2	18.6-18.6	130-130
	575/60/3	2	4	4	1	2.6	15.4-15.4	104-104
	208/60/3	2	4	4	1	6.2	50.6-50.6	338-338
	230/60/3	2	4	4	1	6.7	44.3-44.3	338-338
52	380/60/3	2	4	4	1	3.7	26.3-26.3	196-196
	460/60/3	2	4	4	1	3.2	21.2-21.2	158-158
	575/60/3	2	4	4	1	2.6	18.6-18.6	126-126
	208/60/3	2	4	6	1	6.2	53.0-53.0	485-485
	230/60/3	2	4	6	1	6.7	50.4-50.4	485-485
60	380/60/3	2	4	6	1	3.7	31.2-31.2	210-210
	460/60/3	2	4	6	1	3.2	25.8-25.8	160-160
	575/60/3	2	4	6	1	2.6	20.6-20.6	135-135

Data shown for circuit one. The second circuit is always the same.
 RLA - Rated Load Amps - Rated in accordance with UL Standard 1995.
 LRA - Locked Rotor Amps - Based on full winding starts.
 Units have single point power connection as standard. Optional dual point power connections are available for 40-120 ton units.
 Voltage Utilization Range: +/- 10% of rated voltage Rated voltage (use range): 208/60/3 (187.2-228.8), 230/60/3(208-254), 380/60/3 (342-418), 460/60/3 (414-506), 575/60/3 (516-633)
 One separate 120/60/1, 15 amp customer provided power connection is required to power the heaters.

Unit Size	Rated Power	Number Circuits	Qty Comp	Qty Fans	Fan Motor Power (kw)	Cond Fan FLA	Compressor RLA ^{1 2}	Compressor LRA ^{1 3}
	208/60/3	2	4	6	1	6.2	53.0-73.9	485-485
	230/60/3	2	4	6	1	6.7	50.4-67.3	485-485
70	380/60/3	2	4	6	1	3.7	31.2-39.9	210-260
	460/60/3	2	4	6	1	3.2	25.8-33.0	160-215
	575/60/3	2	4	6	1	2.6	20.6-26.4	135-175
	208/60/3	2	4	6	1	6.2	73.9-73.9	485-485
	230/60/3	2	4	6	1	6.7	67.3-67.3	485-485
80	380/60/3	2	4	6	1	3.7	39.9-39.9	260-260
	460/60/3	2	4	6	1	3.2	33.0-33.0	215-215
	575/60/3	2	4	6	1	2.6	26.4-26.4	175-175
	208/60/3	2	4	6	1	6.2	73.9-91.3	485-560
	230/60/3	2	4	6	1	6.7	67.3-84.6	485-560
90	380/60/3	2	4	6	1	3.7	39.9-54.5	260-310
	460/60/3	2	4	6	1	3.2	33.0-41.9	215-260
	575/60/3	2	4	6	1	2.6	26.4-34.0	175-210
	208/60/3	2	4	8	1	6.2	91.3-91.3	560-560
	230/60/3	2	4	8	1	6.7	84.6-84.6	560-560
100	380/60/3	2	4	8	1	3.7	54.5-54.5	310-310
	460/60/3	2	4	8	1	3.2	41.9-41.9	260-260
	575/60/3	2	4	8	1	2.6	34.0-34.0	210-210
	208/60/3	2	4	8	1	6.2	91.3-109.5	560-680
	230/60/3	2	4	8	1	6.7	84.6-109.0	560-680
110	380/60/3	2	4	8	1	3.7	54.5-59.6	310-360
	460/60/3	2	4	8	1	3.2	41.9-50.6	260-320
	575/60/3	2	4	8	1	2.6	34.4-38.6	210-235
	208/60/3	2	4	8	1	6.2	109.5-109.5	680-680
	230/60/3	2	4	8	1	6.7	109.0-109.0	680-680
120	380/60/3	2	4	8	1	3.7	59.6-59.6	360-360
	460/60/3	2	4	8	1	3.2	50.6-50.6	320-320
	575/60/3	2	4	8	1	2.6	38.6-38.6	235-235

Table 13. Electrical Data - 60 Hz

Data shown for circuit one. The second circuit is always the same.
 RLA - Rated Load Amps - Rated in accordance with UL Standard 1995.
 LRA - Locked Rotor Amps - Based on full winding starts.
 Units have single point power connection as standard. Optional dual point power connections are available for 40-120 ton units.
 Voltage Utilization Range: +/- 10% of rated voltage Rated voltage (use range): 208/60/3 (187.2-228.8), 230/60/3(208-254), 380/60/3 (342-418), 460/60/3 (414-506), 575/60/3 (516-633)
 One separate 120/60/1, 15 amp customer provided power connection is required to power the heaters.

					Dual Poir	nt Power	
Unit	Rated	Single Po	oint Power	Circ	uit 1	Circ	uit 2
Size	Power	MCA ¹	MOPD ²	MCA1	MOPD ²	MCA1	MOPD ²
	208/60/3	105.6	125				
	230/60/3	105.5	125				
20	380/60/3	60.0	80		n/	'a	
	460/60/3	50.5	60				
	575/60/3	42.4	50				
	208/60/3	131.5	175				
	230/60/3	117.2	150				
26	380/60/3	68.7	90		n/	'a	
	460/60/3	56.4	70				
	575/60/3	49.6	60				
	208/60/3	143.1	175				
	230/60/3	145.8	175				
30	380/60/3	83.5	110		n/	'a	
	460/60/3	69.9	90				
	575/60/3	56.7	70				
	208/60/3	169.2	225				
	230/60/3	162.4	225				
35	380/60/3	94.3	125		n/	'a	
	460/60/3	78.9	110				
	575/60/3	63.9	90				
	208/60/3	197.3	225	105.6	125	101.5	125
	230/60/3	197.7	225	105.5	125	102.0	125
40	380/60/3	112.2	125	60.0	80	57.8	80
	460/60/3	94.6	110	50.5	60	48.7	60
	575/60/3	79.4	90	42.3	50	40.9	50
	208/60/3	246.2	250	131.5	175	127.4	175
	230/60/3	219.8	250	117.2	150	113.7	150
52	380/60/3	128.6	150	68.7	90	66.5	90
	460/60/3	105.7	125	56.4	70	54.6	70
	575/60/3	93.0	110	49.6	60	48.1	60
	208/60/3	287.9	300	153.2	175	149.1	175
	230/60/3	259.2	300	137.7	175	134.1	175
60	380/60/3	157.0	175	83.5	110	81.3	110
	460/60/3	131.6	150	69.9	90	68.2	90
	575/60/3	106.8	125	56.7	70	55.3	70

Table 14. Electrical Data - 60 Hz - Unit Wiring - MCA/MOPD

MCA - Minimum Circuit Ampacity-125 percent of largest compressor RLA plus 100 percent of all other loads per NEC 440-33 2008.
 Max Fuse or HACR type breaker or MOPD -225 percent of the largest compressor RLA plus all other loads per NEC 440-22 2008.
 Data shown for circuit one. The second circuit is always the same.
 Local codes may take precedence.
 n/a - not available

					Dual Poir	nt Power	
Unit	Rated	Single Po	oint Power	Circ	uit 1	Circ	uit 2
Size	Power	MCA ¹	MOPD ²	MCA1	MOPD ²	MCA1	MOPD ²
	208/60/3	354.5	400	190.2	225	186.1	225
	230/60/3	317.2	350	169.9	225	166.4	200
70	380/60/3	176.5	200	94.3	125	92.2	125
	460/60/3	147.8	175	78.9	110	77.2	110
	575/60/3	119.8	125	63.9	90	62.5	80
	208/60/3	357.6	400	190.1	250	186.0	250
	230/60/3	331.0	350	175.7	225	172.1	225
80	380/60/3	193.9	225	103.0	125	100.9	125
	460/60/3	162.2	175	86.1	110	84.4	110
	575/60/3	131.4	150	69.7	90	68.3	90
	208/60/3	396.7	450	211.8	300	207.7	250
	230/60/3	369.9	450	197.3	250	193.8	250
90	380/60/3	226.8	250	121.3	175	119.1	150
	460/60/3	182.3	200	97.3	125	95.5	125
	575/60/3	148.5	175	79.2	110	77.8	110
	208/60/3	443.9	500	235.4	300	231.3	300
	230/60/3	417.9	500	221.3	300	217.8	300
100	380/60/3	263.3	300	139.6	175	137.4	175
	460/60/3	206.5	225	109.4	150	107.6	125
	575/60/3	168.9	200	89.4	110	88.0	110
	208/60/3	484.9	500	258.2	350	254.1	350
	230/60/3	472.8	500	251.8	350	248.3	350
110	380/60/3	274.8	300	145.9	200	143.8	200
	460/60/3	226.1	250	120.3	150	118.5	150
	575/60/3	179.3	200	95.2	125	93.8	125
	208/60/3	521.3	600	276.4	350	272.3	350
	230/60/3	521.6	600	276.2	350	272.7	350
120	380/60/3	285.1	300	151.1	200	148.9	200
	460/60/3	243.6	250	129.0	175	127.2	175
	575/60/3	188.5	225	99.8	125	98.4	125

Table 14. Electrical Data - 60 Hz - Unit Wiring - MCA/MOPD

MCA - Minimum Circuit Ampacity-125 percent of largest compressor RLA plus 100 percent of all other loads per NEC 440-33 2008.
 Max Fuse or HACR type breaker or MOPD -225 percent of the largest compressor RLA plus all other loads per NEC 440-22 2008.
 Data shown for circuit one. The second circuit is always the same.
 Local codes may take precedence.
 n/a - not available

Units SizePersoneStd Fault ckt BreakerPersoneTerminal BlocksStd Fault ckt BreakerPersone ckt Breaker208/60/3#6 - 350 MCM#3 - 3/0#3 - 3/0#3 - 3/0#4 - 350 MCM#10 - 1/0#10 - 1/0m/a208/60/3#6 - 350 MCM#10 - 1/0#10 - 1/0#10 - 1/0m/am/a#10 - 1/0575/60/3#6 - 350 MCM#10 - 1/0#10 - 1/0m/a#10 - 1/0m/a#10 - 1/0208/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#10 - 1/0m/a208/60/3#6 - 350 MCM#6 - 350 MCM#10 - 1/0m/am/a#10 - 1/0208/60/3#6 - 350 MCM#10 - 1/0#10 - 1/0m/am/a#10 - 1/0575/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#10 - 1/0575/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM460/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM380/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM460/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM380/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM460/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM380/60/3#6 - 350 MCM#6 - 350 MCM#6 - 350 MCM <t< th=""><th></th><th></th><th></th><th>Single Point Powe</th><th>er</th><th></th><th>Dual Point Power</th><th>•</th></t<>				Single Point Powe	er		Dual Point Power	•
220/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #10 - 1/0 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #0 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 575/60/3 #6 - 350 MCM #10 - 1/0 m/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 575/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 380/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #3 - 3/0 n/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 <td< th=""><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th>-</th></td<>					•			-
20 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #10 - 1/0 m/a n/a 200/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 230/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 230/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #3 - 3/0 m/a n/a 208/60/3 #6 - 350 MCM #3 - 3/0 m/a		208/60/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0			
460/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 230/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #10 - 1/0 m/a 380/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 575/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM		230/60/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0			
575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 26 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 30 380/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 380/60/3 #6 - 350 MCM #3 - 3/0 n/a 208/60/3 #6 - 350 MCM #3 - 3/0 n/a 208/60/3 #6 - 350 MCM #3 - 3/0 m/a<	20	380/60/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0		n/a	
208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 220/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 226 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 30 300/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM <		460/60/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0			
230/60/3 #6 - 350 MCM #6 - 350 MCM #10 - 1/0 #10 - 1/0 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #40 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a #6 - 350 MCM #6 - 350 MCM 400 #60/60/3 #6 - 350 MCM #10 - 1/0 m/a<		575/60/3	#6 - 350 MCM	#10 - 1/0	n/a			
26 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 300 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 300 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a m/a 575/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a m/a 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a #6 - 350 MCM #6 - 350 MCM 400 380/60/3 #6 - 350 MCM #10 - 1/0 m/a #6 - 350 MCM		208/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
460/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a 30 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 30 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #3 - 3/0 30 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a #6 - 350 MCM #6 - 350 MCM <td></td> <td>230/60/3</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td></td> <td></td> <td></td>		230/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 30 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM m/a 30 380/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 m/a m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 330/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM #6 - 350 MCM<	26	380/60/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0		n/a	
208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 30 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 450/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 35 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 40 380/60/3 #6 - 350 MCM #10 - 1/0 n/a #6 - 350 MCM #		460/60/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0			
230/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM n/a 30 380/60/3 #6 - 350 MCM #3 - 3/0 n/a 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 n/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 330/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 575/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM 300 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 208/60/3 <td></td> <td>575/60/3</td> <td>#6 - 350 MCM</td> <td>#10 - 1/0</td> <td>n/a</td> <td></td> <td></td> <td></td>		575/60/3	#6 - 350 MCM	#10 - 1/0	n/a			
30 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a n/a 30 30/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 300 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 400 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 208/60		208/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
460/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 35 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a m/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 300 60/3 #6 - 350 MCM 400/60/3 #6 - 350 MCM 208/60/3 #6 - 350 MCM #6		230/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 35 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 575/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #6 - 350 MCM #6 - 350 MCM 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM 300/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 400 #6 - 350 MCM 400/60/3 #6 - 350 MCM #6 -	30	380/60/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0		n/a	
208/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 35 380/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM m/a 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #3 - 3/0 m/a 208/60/3 #6 - 350 MCM #10 - 1/0 n/a m/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 300 505/60/3 #6 - 350 MCM 300 500 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 208/60/3 #6 - 350 MCM </th <td></td> <td>460/60/3</td> <td>#6 - 350 MCM</td> <td>#10 - 1/0</td> <td>#10 - 1/0</td> <td></td> <td></td> <td></td>		460/60/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0			
35 230/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM m/a 35 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 575/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 n/a 575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 400 380/60/3 #6 - 350 MCM #		575/60/3	#6 - 350 MCM	#10 - 1/0	n/a			
35 380/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #3 - 3/0 #3 - 3/0 460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 #3 - 3/0 #3 - 3/0 575/60/3 #6 - 350 MCM #10 - 1/0 n/a		208/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
460/60/3 #6 - 350 MCM #3 - 3/0 #3 - 3/0 575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 330/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 460/60/3 #6 - 350 MCM 575/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 238/60/3 #6 - 350 MCM 460/60/3 <td></td> <td>230/60/3</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td></td> <td></td> <td></td>		230/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM			
575/60/3 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 460/60/3 #6 - 350 MCM 575/60/3 #6 - 350 MCM 508/60/3 #6 - 350 MCM #6 - 350 MCM 1/0 - 1/0 n/a #6 - 350 MCM #6 - 350 MCM 52 380/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 52 380/60/3 #6 - 350 MCM 54 460/60/3 #6 - 350 MCM #6 - 35	35	380/60/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0		n/a	
208/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 40 380/60/3 #6 - 350 MCM 575/60/3 #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM n/a #6 - 350 MCM #10 - 1/0 m/a 208/60/3 #6 - 350 MCM #6 - 350 MCM m/a #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 52 380/60/3 #6 - 350 MCM 50 MCM #6 - 350 MCM #6 - 350 MCM <t< th=""><td></td><td>460/60/3</td><td>#6 - 350 MCM</td><td>#3 - 3/0</td><td>#3 - 3/0</td><td></td><td></td><td></td></t<>		460/60/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0			
40 230/60/3 #6 - 350 MCM 3/0 - 500 MCM 3/0 - 500 MCM #6 - 350 MCM #10 - 1/0 #10 - 1/0 #10 - 1/0 #10 - 1/0 #10 - 1/0 m/a 575/60/3 #6 - 350 MCM #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM		575/60/3	#6 - 350 MCM	#10 - 1/0	n/a			
40 380/60/3 #6 - 350 MCM #10 - 1/0 <td< th=""><td></td><td>208/60/3</td><td>#6 - 350 MCM</td><td>3/0 - 500 MCM²</td><td>3/0 - 500 MCM²</td><td>#6 - 350 MCM</td><td>#6 - 350 MCM</td><td>#6 - 350 MCM</td></td<>		208/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
460/60/3 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM #10 - 1/0 #10 - 1/0 575/60/3 #6 - 350 MCM #6 - 350 MCM n/a #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 52 380/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 460/60/3 #6 - 350 MCM 575/60/3 #6 - 350 MCM #6 - 350 MCM m/a #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM		230/60/3	#6 - 350 MCM	3/0 - 500 MCM	3/0 - 500 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
575/60/3 #6 - 350 MCM #6 - 350 MCM n/a #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM2 3/0 - 500 MCM2 #6 - 350 MCM	40	380/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
208/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM <td></td> <td>460/60/3</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td>#6 - 350 MCM</td> <td>#10 - 1/0</td> <td>#10 - 1/0</td>		460/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#10 - 1/0	#10 - 1/0
230/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350		575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#10 - 1/0	n/a
52 380/60/3 #6 - 350 MCM #6 - 350 MCM<		208/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
460/60/3 #6 - 350 MCM #6		230/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
575/60/3 #6 - 350 MCM #6 - 350 MCM n/a #6 - 350 MCM #10 - 1/0 n/a 208/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 60 380/60/3 #6 - 350 MCM 460/60/3 #6 - 350 MCM	52	380/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
208/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 230/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 380/60/3 #6 - 350 MCM 460/60/3 #6 - 350 MCM		460/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
230/60/3 #6 - 350 MCM 3/0 - 500 MCM ² 3/0 - 500 MCM ² #6 - 350 MCM #6 - 350 MCM #6 - 350 MCM 60 380/60/3 #6 - 350 MCM #6 -		575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#10 - 1/0	n/a
60 380/60/3 #6 - 350 MCM <	-	208/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
460/60/3 #6 - 350 MCM		230/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	60	380/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
575/60/3 #6 - 350 MCM #6 - 350 MCM n/a #6 - 350 MCM #6 - 350 MCM n/a		460/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
		575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a

Table 15. Lug Range Size - 60 Hz - Standard Unit

Optional circuit breaker and high fault circuit breaker.
 Will accept two conduits per phase in this size.
 Copper wire only, based on nameplate Minimum Circuit Ampacity (MCA).
 Data shown for circuit one. The second circuit is always the same.
 n/a - not available

Installation - Electrical

		5	Single Point Powe	r		Dual Point Power	
Unit Size	Rated Power	Terminal Blocks	Std Fault Ckt Breaker ¹	High Fault Ckt Breaker ¹	Terminal Blocks	Std Fault Ckt Breaker ¹	High Fault Ckt Breaker ¹
	208/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	230/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
70	380/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a
	208/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM	#6 - 350 MCM
	230/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
80	380/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a
	208/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
	230/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
90	380/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	#6 - 350 MCM	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a
	208/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
	230/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
100	380/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	3/0 - 500 MCM	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a
	208/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
	230/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
110	380/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a
	208/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
	230/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²
120	380/60/3	#4 - 500 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	460/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
	575/60/3	#6 - 350 MCM	3/0 - 500 MCM ²	n/a	#6 - 350 MCM	#6 - 350 MCM	n/a

Table 15. Lug Range Size - 60 Hz - Standard Unit

Optional circuit breaker and high fault circuit breaker.
 Will accept two conduits per phase in this size.
 Copper wire only, based on nameplate Minimum Circuit Ampacity (MCA).
 Data shown for circuit one. The second circuit is always the same.
 n/a - not available

Installation - Electrical

Table 16. Electrical Data - 50Hz

Unit Size	Rated Power	Number Circuits	Qty Comp	Qty Fans	Fan Motor Power (kW)	Cond Fan FLA	Compressor RLA ^{1 2}	Compressor LRA ^{1 3}
20	400/50/3	1	2	2	1	2.4	16.6-16.6	142-142
26	400/50/3	1	2	2	1	2.4	20.6-20.6-	158-158
30	400/50/3	1	2	3	1	2.4	26.7-26.7	160-160
35	400/50/3	1	2	3	1	2.4	26.7-33.2	160-215
40	400/50/3	2	4	4	1	2.4	16.6-16.6	130-130
52	400/50/3	2	4	4	1	2.4	20.6-20.6	158-158
60	400/50/3	2	4	6	1	2.4	26.7-26.7	160-160
70	400/50/3	2	4	6	1	2.4	26.7-33.2	160-215
80	400/50/3	2	4	6	1	2.4	33.2-33.2	175-175
90	400/50/3	2	4	6	1	2.4	33.2-42.5	175-210
100	400/50/3	2	4	8	1	2.4	42.5-42.5	210-210
110	400/50/3	2	4	8	1	2.4	42.5-46.9	210-235
120	400/50/3	2	4	8	1	2.4	46.9-46.9	235-235

Data shown for circuit one. The second circuit is always the same.
 RLA - Rated Load Amps - Rated in accordance with UL Standard 1995.
 LRA - Locked Rotor Amps - Based on full winding starts.

4. Units have single point power connection as standard. Optional dual point power connections are available for 40-120 ton units.

Voltage Utilization Range: Rated voltage (use range): 400/50/3 (360-440)
 One separate 120/50/1, 15 amp customer provided power connection is required to power the heaters.

Unit	Rated	Single Po	oint Power		Dual Poir	nt Power	
Size	Power	MCA ¹	MOPD ²	MCA1	MOPD ²	MCA1	MOPD ²
20	400/50/3	45.5	60				
26	400/50/3	54.5	70			12	
30	400/50/3	70.6	90		n/	'a	
35	400/50/3	78.8	110				
40	400/50/3	84.8	100	45.5	60	43.5	60
52	400/50/3	101.8	110	54.5	70	52.5	70
60	400/50/3	132.5	150	70.6	90	68.6	90
70	400/50/3	147.2	175	78.8	110	76.7	100
80	400/50/3	160.2	175	85.3	110	83.2	110
90	400/50/3	181.1	200	96.9	125	94.8	125
100	400/50/3	204.5	225	108.6	150	106.5	125
110	400/50/3	214.4	250	114.1	150	112.0	150
120	400/50/3	223.2	250	118.5	150	116.4	150

Table 17. Electrical Data - 50 Hz - Unit Wiring - MCA/MOPD

MCA - Minimum Circuit Ampacity-125 percent of largest compressor RLA plus 100 percent of all other loads per NEC 440-33 2008.
 MOPD or Max Fuse or HACR type breaker-225 percent of the largest compressor RLA plus 100 percent of all other loads per NEC 440-22 2008.
 Data shown for circuit one. The second circuit is always the same.
 Local codes may take precedence.
 n/a - means option not available with voltage.

			Single Point Pow	er		Dual Point Powe	r
Unit Size	Rated Power	Terminal Blocks	Std Fault Ckt Breaker ¹	High Fault Ckt Breaker ¹	Terminal Blocks	Std Fault Ckt Breaker ¹	High Fault Ckt Breaker ¹
20	400/50/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0			
26	400/50/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0		- /-	
30	400/50/3	#6 - 350 MCM	#10 - 1/0	#10 - 1/0		n/a	
35	400/50/3	#6 - 350 MCM	#3 - 3/0	#3 - 3/0			
40	400/50/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#10 - 1/0	#10 - 1/0
52	400/50/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
60	400/50/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
70	400/50/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
80	400/50/3	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
90	400/50/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
100	400/50/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
110	400/50/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM
120	400/50/3	#6 - 350 MCM	3/0 - 500 MCM ²	3/0 - 500 MCM ²	#6 - 350 MCM	#6 - 350 MCM	#6 - 350 MCM

Table 18. Lug Size Range - 50 Hz

Optional circuit breaker and high fault circuit breaker.
 Will accept two conduits per phase in this size.
 Copper wire only, based on nameplate Minimum Circuit Ampacity (MCA).
 Data shown for circuit one. The second circuit is always the same.
 n/a - not available

Installer-Supplied Components

Customer wiring interface connections are shown in the electrical schematics and connection diagrams that are shipped with the unit. The installer must provide the following components if not ordered with the unit:

- Power supply wiring (in conduit) for all field-wired connections.
- All control (interconnecting) wiring (in conduit) for field supplied devices.
- Circuit breakers.

Power Supply Wiring

A WARNING Ground Wire!

All field-installed wiring must be completed by qualified personnel. All field-installed wiring must comply with NEC and applicable local codes. Failure to follow this instruction could result in death or serious injuries.

All power supply wiring must be sized and selected accordingly by the project engineer in accordance with NEC Table 310-16.

A WARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

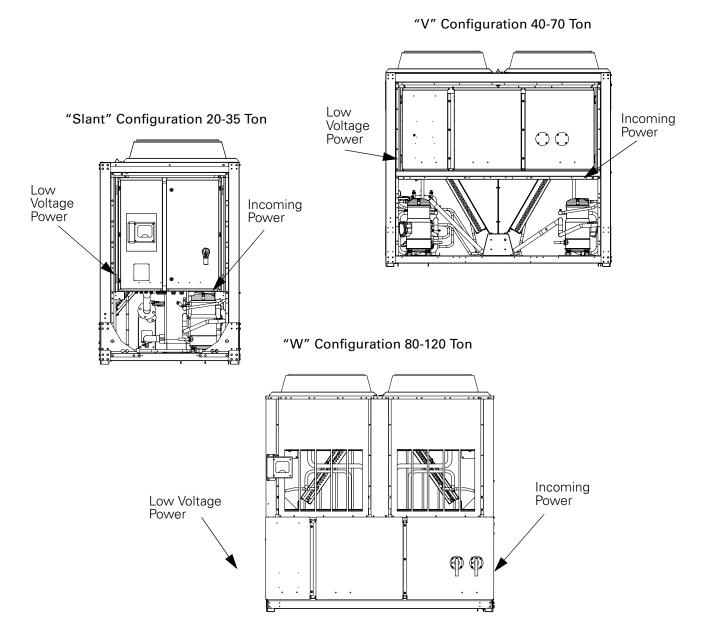
All wiring must comply with local codes and the National Electrical Code. The installing (or electrical) contractor must provide and install the system interconnecting wiring, as well as the power supply wiring. It must be properly sized and equipped with the appropriate fused disconnect switches.

The type and installation location(s) of the fused disconnects must comply with all applicable codes.

▲ CAUTION Use Copper Conductors Only!

Unit terminals are not designed to accept other types of conductors. Failure to use copper conductors may result in equipment damage.

Knock-outs for wiring are located on the bottom right side of the control panel. The wiring is passed through these conduits and connected to the terminal blocks or HACR type breakers. Refer to Figure 31.


To provide proper phasing of 3-phase input, make connections as shown in field wiring diagrams and as stated on the WARNING label in the starter panel. For additional

information on proper phasing, refer to "Unit Voltage Phasing." Proper equipment ground must be provided to each ground connection in the panel (one for each customer-supplied conductor per phase).

The high voltage field-provided connections are made through knockouts on the right side of the panel. The low voltage connections are made through the left side of the panel (Figure 31). Additional grounds may be required for each 115 volt power supply to the unit. Green lugs are provided for 115V customer wiring.

Figure 31. Power Entrance

Control Power Supply

The unit is equipped with a control power transformer; it is not necessary to provide additional control power voltage to the unit. No other loads should be connected to the control power transformer.

All units are factory-connected for appropriate labeled voltages.

CAUTION Heat Tape!

Control panel main processor does not check for loss of power to the heat tape nor does it verify thermostat operation. A qualified technician must verify power to the heat tape and confirm operation of the heat tape thermostat to avoid catastrophic damage to the evaporator or partial heat recovery heat exchanger.

Heater Power Supply

The evaporator shell is insulated from ambient air and protected from freezing temperatures by a thermostatically-controlled immersion heater and strip heaters on the piping. When ever the ambient temperature drops to approximately 37°F (2.8°C) the thermostat energizes the heaters. The heaters will provide protection from ambient temperatures down to -20°F (-29°C).

It is required to provide an independent power source (115V 60-Hz-20 amp, 50Hz-15 amp), with a fused-disconnect to the heaters. The heaters are factory-wired back to the unit control panel.

Note: If evaporator is drained, the heater must be turned off in order to avoid damaging the evaporator. The heater should only be on when the evaporator has water in it.

Partial Heat Recovery Power Supply

The partial heat recover heat exchanger is insulated from ambient air and protected from freezing temperatures by an immersion heater. When ever the ambient air temperature drops to approximately 37°F (2.8°C) the thermostat energizes the heaters. The heaters will provide protection from ambient temperatures down to -20°F (-29°C).

It is required to provide an independent power source (115V 60-Hz-20 amp, 50Hz-15 amp), with a fused-disconnect to the heater. The heaters are factory-wired back to the unit control panel.

Note: If partial heat recovery heat exchanger is drained, the heater must be turned off in order to avoid damaging the partial heat recovery heat exchanger. The heater should only be on when the heat recovery heat exchanger has water in it.

Water Pump Power Supply

Provide power supply wiring with disconnect for the chilled water pump(s).

Interconnecting Wiring

Chilled Water Flow (Pump) Interlock

All CGAM model chillers have a factory-installed flow switch. In addition, it is recommended to use an additional field-supplied control voltage contact input through an auxiliary contact to prove flow. Connect the auxiliary contact to 1A17. Refer to the field wiring for details. The auxiliary contact can be a BAS signal, starter contactor auxiliary or any signal which indicates the pump is running.

Chilled Water Pump Control

An evaporator water pump output relay closes when the chiller is given a signal to go into the Auto mode of operation from any source. The contact is opened to turn off the pump in the event of most machine level diagnostics to prevent the build up of pump heat.

The relay output from 1A9 is required to operate the Evaporator Water Pump (EWP) contactor. Contacts should be compatible with 115/240 VAC control circuit. Normally, the EWP relay follows the AUTO mode of the chiller. Whenever the chiller has no diagnostics and is in the AUTO mode, regardless of where the auto command is coming from, the normally open relay is energized. When the chiller exits the AUTO mode, the relay is timed to open in an adjustable (using TechView) 0 to 30 minutes. The non-AUTO modes in which the pump is stopped, include Reset, Stop, External Stop, Remote Display Stop, Stopped by Tracer, Start Inhibited by Low Ambient Temp, and Ice Building complete.

NOTICE Equipment damage!

If the microprocessor calls for a pump to start and water does not flow, the evaporator may be damaged catastrophically. It is the responsibility of the installing contractor and/or the customer to ensure that a pump will always be running when called upon by the chiller controls.

Chiller Mode	Relay Operation
Auto	Instant close
Ice Building	Instant close
Tracer Override	Close
Stop	Timed to Open
Ice Complete	Instant Open
Diagnostics	Instant Open

Table 19. Pump Relay Operation

When going from Stop to Auto, the EWP relay is energized immediately. If evaporator water flow is not established in 4 minutes and 15 seconds, the CH530 de-energizes the EWP relay and generates a non-latching diagnostic. If flow returns (e.g. someone else is controlling the pump), the diagnostic is cleared, the EWP relay is re-energized, and normal control resumed.

If evaporator water flow is lost once it has been established, the EWP relay remains energized and a non-latching diagnostic is generated. If flow returns, the diagnostic is cleared and the chiller returns to normal operation.

NOTICE Equipment damage!

Do NOT enable/disable the chiller by removing water flow or equipment damage can occur.

In general, when there is either a non-latching or latching diagnostic, the EWP relay is turned off as though there was a zero time delay. The relay continues to be energized with:

A Low Chilled Water Temperature diagnostic (non-latching) unless also accompanied by an Evap Leaving Water Temperature Sensor Diagnostic.

or

A Loss of Evaporator Water Flow diagnostic (non-latching) and the unit is in the AUTO mode, after initially having proven evaporator water flow.

Note: If pump control is used for freeze protection then the pump MUST be controlled by the CGAM CH530 control. If another method of freeze protection is used (i.e. glycol, heaters, purge, etc) then the pump may be controlled by another system.

Chilled Water Pump Control - Field Supplied Dual Pumps

CH530 can provide pump control for two customer-supplied pumps, as long as the pump contactor coils 1A9 and connect the pump fault feedback signals 1A12 are properly connected .

In this situation, the unit will leave the factory with Evaporator Pump Control (EVPC) = No Pump Control (Pump Request Relay) (NPMP) and Evaporator Pump Fault Input (EVFI) = Installed (INST).When the contactors and pumps are set up in the field, the CH530 Service Tool (TechView) must be used to reconfigure to Evaporator Pump Control = Dual Pump Fixed Speed and Evaporator Pump Fault Input = Not Installed or Installed depending on how the fault feedback wire is connected. It is strongly recommended to install the Fault Input if possible as the controls will "hot-swap" the pumps upon detection of a fault, and may avoid the inevitable Flow Loss diagnostic (and unit shutdown) that will result if there is no fault feedback.

When configured for Dual Pump Fixed Speed, the CH530 will swap pumps on detection of a fault (if installed), or when a flow loss or overdue event occurs. It will also switch pumps each time the overall pump request is removed and re-engaged, unless a fault is detected on one of the pumps. If faults are detected on both pumps, the unit will be shut down.

In addition to the factory installed flow switch, a field-supplied auxiliary contact is required, so that the chiller will only detect flow if a pump is running and the flow switch says flow is present.

Alarm and Status Relay Outputs (Programmable Relays)

A programmable relay concept provides for enunciation of certain events or states of the chiller, selected from a list of likely needs, while only using four physical output relays, as shown in the field wiring diagram. The four relays are provided (generally with a Quad Relay Output LLID) as part of the Alarm Relay Output Option. The relay's contacts are isolated Form C (SPDT), suitable for use with 120 VAC circuits drawing up to 2.8 amps inductive, 7.2 amps resistive, or 1/3 HP and for 240 VAC circuits drawing up to 0.5 amp resistive.

The list of events/states that can be assigned to the programmable relays can be found in Table 20. The relay will be energized when the event/state occurs.

Table 20. Alarm and Status Relay Output Configuration Table

	Description
Alarm - Latching	This output is true whenever there is any active diagnostic that requires a manual reset to clear, that affects either the Chiller, the Circuit, or any of the Compressors on a circuit. This classification does not include informational diagnostics.
Alarm - Auto Reset	This output is true whenever there is any active diagnostic that could automatically clear, that affects either the Chiller, the Circuit, or any of the Compressors on a circuit. This classification does not include informational diagnostics.
Alarm	This output is true whenever there is any diagnostic affecting any component, whether latching or automatically clearing. This classification does not include informational diagnostics
Alarm Ckt 1	This output is true whenever there is any diagnostic effecting Refrigerant Circuit 1, whether latching or automatically clearing, including diagnostics affecting the entire chiller. This classification does not include informational diagnostics.
Alarm Ckt 2	This output is true whenever there is any diagnostic affecting Refrigerant Circuit 2 whether latching or automatically clearing, including diagnostics effecting the entire chiller. This classification does not include informational diagnostics.
Chiller Limit Mode (with a 20 minute filter)	This output is true whenever the chiller has been running in one of the Unloading types of limit modes (Condenser, Evaporator, Current Limit or Phase Imbalance Limit) continuously for the last 20 minutes.
Circuit 1 Running	This output is true whenever any compressor is running (or commanded to be running) on Refrigerant Circuit 1, and false when no compressors are commanded to be running on that circuit.
Circuit 2 Running	This output is true whenever any compressor is running (or commanded to be running) on Refrigerant Circuit 2, and false when no compressors are commanded to be running on that circuit.
Chiller Running	This output is true whenever any compressor is running (or commanded to be running) on the chiller and false when no compressors are commanded to be running on the chiller.
Maximum Capacity	This output is true whenever the chiller has all compressors on. The output is false once one compressor is shut off.

Relay Assignments Using TechView

CH530 Service Tool (TechView) is used to install the Alarm and Status Relay Option package and assign any of the above list of events or status to each of the four relays provided with the option. The relays to be programmed are referred to by the relay's terminal numbers on the LLID board 1A13.

The default assignments for the four available relays of the CGAM Alarm and Status Package Option are:

Table 21. Default Assignments

Alarm
Chiller Running
Maximum Capacity (software 18.0 or later)
Chiller Limit

If any of the Alarm/Status relays are used, provide electrical power, 115 VAC with fuseddisconnect to the panel and wire through the appropriate relays (terminals on 1A13. Provide wiring (switched hot, neutral, and ground connections) to the remote annunciation devices. Do not use power from the chiller's control panel transformer to power these remote devices. Refer to the field diagrams which are shipped with the unit.

Low Voltage Wiring

A WARNING Ground Wire!

All field-installed wiring must be completed by qualified personnel. All field-installed wiring must comply with NEC and applicable local codes. Failure to follow this instruction could result in death or serious injuries.

The remote devices described below require low voltage wiring. All wiring to and from these remote input devices to the Control Panel must be made with shielded, twisted pair conductors. Be sure to ground the shielding only at the panel.

Note: To prevent control malfunctions, do not run low voltage wiring (<30 V) in conduit with conductors carrying more than 30 volts.

Emergency Stop

CH530 provides auxiliary control for a customer specified/installed latching trip out. When this customer-furnished remote contact 5K24 is provided, the chiller will run normally when the contact is closed. When the contact opens, the unit will trip on a manually resettable diagnostic. This condition requires manual reset at the chiller switch on the front of the control panel.

Connect low voltage leads to terminal strip locations on 1A13, J2-3 and 4. Refer to the field diagrams that are shipped with the unit.

Silver or gold-plated contacts are recommended. These customer-furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Auto/Stop

If the unit requires the external Auto/Stop function, the installer must provide leads from the remote contact 5K23 to the proper terminals on 1A13, J2-1 and 2.

The chiller will run normally when the contact is closed. When the contact opens, the compressor(s), if operating, will go to the RUN:UNLOAD operating mode and cycle off.

Unit operation will be inhibited. Closure of the contact will permit the unit to return to normal operation.

Field-supplied contacts for all low voltage connections must be compatible with dry circuit 24 VDC for a 12 mA resistive load. Refer to the field diagrams that are shipped with the unit.

NOTICE Equipment damage!

Do NOT enable/disable the chiller by removing water flow or equipment damage can occur.

Ice Building Option

CH530 provides auxiliary control for a customer specified/installed contact closure for ice building if so configured and enabled. This output is known as the Ice Building Status Relay. The normally open contact will be closed when ice building is in progress and open when ice building has been normally terminated either through Ice Termination setpoint being reached or removal of the Ice Building command. This output is for use with the ice storage system equipment or controls (provided by others) to signal the system changes required as the chiller mode changes from "ice building" to "ice complete". When contact 5K16 is provided, the chiller will run normally when the contact is open.

CH530 will accept either an isolated contact closure (External Ice Building command) or a Remote Communicated input (Tracer) to initiate and command the Ice Building mode.

CH530 also provides a "Front Panel Ice Termination Setpoint", settable through TechView, and adjustable from 20 to 31°F (-6.7 to -0.5°C) in at least 1°F (1°C) increments.

When in the Ice Building mode, and the evaporator entering water temperature drops below the ice termination setpoint, the chiller terminates the Ice Building mode and changes to the Ice Building Complete Mode.

CAUTION Evaporator Damage!

Freeze inhibitor must be adequate for the leaving water temperature. Failure to do so may result in damage to system components.

TechView may also be used to enable or disable Ice Machine Control. This setting does not prevent the Tracer from commanding Ice Building mode.

Upon contact closure, the CH530 will initiate an ice building mode, in which the unit runs fully loaded at all times. Ice building shall be terminated either by opening the contact or based on the entering evaporator water temperature. CH530 will not permit the ice building mode to be reentered until the unit has been switched out of ice building mode (open 5K20 contacts) and then switched back into ice building mode (close 5K20 contacts.)

In ice building, all limits (freeze avoidance, evaporator, condenser, current) will be ignored. All safeties will be enforced.

If, while in ice building mode, the unit gets down to the freeze stat setting (water or refrigerant), the unit will shut down on a manually resettable diagnostic, just as in normal operation.

Connect leads from 5K20 to the proper terminals of 1A16. Refer to the field diagrams which are shipped with the unit.

Silver or gold-plated contacts are recommended. These customer furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Chilled Water Setpoint (ECWS) Option

The CH530 provides inputs that accept either 4-20 mA or 2-10 VDC signals to set the external chilled water setpoint (ECWS). **This is not a reset function.** The input defines the set point. This input is primarily used with generic BAS (building automation systems). The chilled water setpoint set via the DynaView or through digital communication with Tracer.

The chilled water setpoint may be changed from a remote location by sending either a 2-10 VDC or 4-20 mA signal to the 1A14, J2-1 and 2. The 2-10 VDC and 4-20 mA each correspond to a 10 to 65°F (-12 to 18°C) external chilled water setpoint.

The following equations apply:

	Voltage Signal	Current Signal
As generated from external source	VDC=0.1455*(ECWS)+0.5454	mA=0.2909(ECWS)+1.0909
As processed by CH530	ECWS=6.875*(VDC)-3.75	ECWS=3.4375(mA)-3.75

If the ECWS input develops an open or short, the LLID will report either a very high or very low value back to the main processor. This will generate an informational diagnostic and the unit will default to using the Front Panel (DynaView) Chilled Water Setpoint.

TechView Service Tool is used to set the input signal type from the factory default of 2-10 VDC to that of 4-20 mA. TechView is also used to install or remove the External Chilled Water Setpoint option as well as a means to enable and disable ECWS.

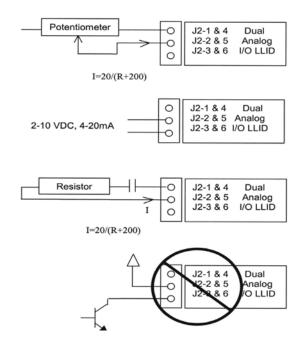
External Demand Limit Setpoint (EDLS) Option

CH530 provide a means to limit the capacity of the chiller by limiting the number of compressors or stages that are allowed to run. The maximum number of compressor or stages allowed to run can vary from one to the number of stages on the unit. The staging algorithm is free to decide which compressor or stage shall be turned off or prevented from running to meet this requirement.

CH530 shall accept either a 2-10 VDC or 4-20 mA analog input suitable for customer connection to set the unit external demand limit setpoint (EDLS).

2-10 VDC and 4-20 mA shall each correspond to an EDLS range with a minimum of 0% and a maximum of 100%. The following equations exist.

Global Scroll	Voltage Signal	Current Signal
As generated from external source	Vdc = 8*(EDLS) + 2	$mA = 16^{*}(EDLS) + 4$
As processed by CH530	EDLS = (Vdc - 2)/8	EDLS = (mA - 4)/16


The minimum EDLS will be clamped at the front panel based on 100% / Total number of Compressors. For input signals beyond the 2-10VDC or 4-20mA range, the end of range value shall be used. For example, if the customer inputs 21 mA, the EDLS shall limit it self to the corresponding 20 mA EDLS.

ECLS and EDLS Analog Input Signal Wiring Details:

Both the ECLS and EDLS can be connected and setup as either a 2-10 VDC (factory default), 4-20 mA, or resistance input (also a form of 4-20 mA) as indicated below. Depending on the type to be used, the TechView Service Tool must be used to configure the LLID and the MP for the proper input type that is being used. This is accomplished by a setting change on the Custom Tab of the Configuration View within TechView.

The J2-3 and J2-6 terminal is chassis grounded and terminal J2-1 and J2-4 can be used to source 12 VDC. The ECLS uses terminals J2-2 and J2-3. EDLS uses terminals J2-5 and J2-6. Both inputs are only compatible with high-side current sources.

Figure 32. Wiring Examples for ECLS and EDLS

Chilled Water Reset (CWR)

CH530 resets the chilled water temperature set point based on either return water temperature, or outdoor air temperature. Return Reset is standard, Outdoor Reset is optional.

The following shall be selectable:

- One of three Reset Types: None, Return Water Temperature Reset, Outdoor Air Temperature Reset, or Constant Return Water Temperature Reset.
- Reset Ratio Set Points.
- For outdoor air temperature reset there shall be both positive and negative reset ratio's.
- Start Reset Set Points.
- Maximum Reset Set Points.

The equations for each type of reset are as follows:

Return

CWS' = CWS + RATIO (START RESET - (TWE - TWL))

and CWS' > or = CWS

and CWS' - CWS < or = Maximum Reset

Outdoor

CWS' = CWS + RATIO * (START RESET - TOD)

and CWS' > or = CWS

and CWS' - CWS < or = Maximum Reset

where

CWS' is the new chilled water set point or the "reset CWS"

CWS is the active chilled water set point before any reset has occurred, e.g. normally Front Panel, Tracer, or ECWS

RESET RATIO is a user adjustable gain

START RESET is a user adjustable reference

TOD is the outdoor temperature

TWE is entering evap. water temperature

TWL is leaving evap. water temperature

MAXIMUM RESET is a user adjustable limit providing the maximum amount of reset. For all types of reset, CWS' - CWS < or = Maximum Reset.

Reset Type	Reset Ratio Range	Start Reset Range	Maximum Reset Range	Increment English Units	Increment SI Units	Factory Default Value
Return:	10 to 120%	4 to 30 F	0 to 20 F	1%	1%	50%
		(2.2 to 16.7 C)	(0.0 to 11.1 C)			
Outdoor	80 to -80%	50 to 130 F	0 to 20 F	1%	1%	10%
		(10 to 54.4 C)	(0.0 to 11.1 C)			

In addition to Return and Outdoor Reset, the MP provides a menu item for the operator to select a Constant Return Reset. Constant Return Reset will reset the leaving water temperature set point so as to provide a constant entering water temperature. The Constant Return Reset equation is the same as the Return Reset equation except on selection of Constant Return Reset, the MP will automatically set Ratio, Start Reset, and Maximum Reset to the following.

RATIO = 100%

START RESET = Design Delta Temp.

MAXIMUM RESET = Design Delta Temp.

The equation for Constant Return is then as follows:

CWS' = CWS + 100% (Design Delta Temp. - (TWE - TWL))

and CWS' > or = CWS

and CWS' - CWS < or = Maximum Reset

When any type of CWR is enabled, the MP will step the Active CWS toward the desired CWS' (based on the above equations and setup parameters) at a rate of 1 degree F every 5 minutes until the Active CWS equals the desired CWS'. This applies when the chiller is running.

When the chiller is not running the CWS is reset immediately (within one minute) for Return Reset and at a rate of 1 degree F every 5 minutes for Outdoor Reset. The chiller will start at the Differential to Start value above a fully reset CWS or CWS' for both Return and Outdoor Reset.

Communications Interface options

Tracer Communications Interface

This option allows the Tracer CH530 controller to exchange information (e.g. operating setpoints and Auto/Standby commands) with a higher-level control device, such as a Tracer Summit or a multiple-machine controller. A shielded, twisted pair connection establishes the bi-directional communications link between the Tracer CH530 and the building automation system.

Note: To prevent control malfunctions, do not run low voltage wiring (<30 V) in conduit with conductors carrying more than 30 volts.

A WARNING Ground Wire!

All field-installed wiring must be completed by qualified personnel. All field-installed wiring must comply with NEC and applicable local codes. Failure to follow this instruction could result in death or serious injuries.

Field wiring for the communication link must meet the following requirements:

- All wiring must be in accordance with the NEC and local codes.
- Communication link wiring must be shielded, twisted pair wiring (Belden 8760 or equivalent). See the table below for wire size selection:

Table 22. Wire Size

Wire Size	Maximum Length of Communication Wire
14 AWG (2.5 mm ²)	5,000 FT (1525 m)
16 AWG (1.5 mm ²)	2,000 FT (610 m)
18 AWG (1.0 mm ²)	1,000 FT (305 m)

- The communication link cannot pass between buildings.
- All units on the communication link can be connected in a "daisy chain" configuration.

LonTalk Communications Interface for Chillers (LCI-C)

CH530 provides an optional LonTalk Communication Interface (LCI-C) between the chiller and a Building Automation System (BAS). An LCI-C LLID shall be used to provide "gateway" functionality between a LonTalk compatible device and the Chiller. The inputs/ outputs include both mandatory and optional network variables as established by the LonMark Functional Chiller Profile 8040.

Installation Recommendations

- 22 AWG Level 4 unshielded communication wire recommended for most LCI-C installations
- LCI-C link limits: 4500 feet, 60 devices
- Termination resistors are required
- 105 ohms at each end for Level 4 wire
- 82 ohms at each end for Trane "purple" wire
- LCI-C topology should be daisy chain
- Zone sensor communication stubs limited to 8 per link, 50 feet each (maximum)
- One repeater can be used for an additional 4500 feet, 60 devices, 8 communication stubs

Table 23. LonTalk Points List

Inputs/Outputs	Length and Contents	SNVT / UNVT
Chiller Enable/Disable Request	2 bytes	SNVT_switch
Chilled Water Setpoint	2 bytes	SNVT_temp_p
Capacity Limit Setpoint	2 bytes	SNVT_lev_percent
(used by Demand Limit Setpoint)		
Operating Mode Request	1 byte	SNVT_hvac_mode
Chiller Running State	2 bytes	SNVT_switch
Active Chilled Water or Hot Water Setpoint	2 bytes	SNVT_temp_p
Actual Running Capacity	2 bytes	SNVT_lev_percent
Active Capacity Limit Setpoint (from Active	2 bytes	SNVT_lev_percent
Demand Limit Setpoint)		
Evaporator Leaving Water Temp	2 bytes	SNVT_temp_p
Evaporator Entering Water Temp	2 bytes	SNVT_temp_p
Alarm Description	31 bytes	SNVT_str_asc
Chiller Status	3 bytes	SNVT_chlr_status
00 = Chiller off		

01 = Chiller in start mode

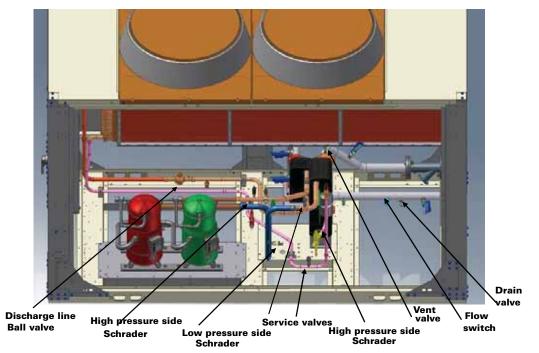
- 02 = Chiller in run mode
- 03 = Chiller in pre-shutdown mode
- 04 = Chiller in service mode
- 03 = Cooling only
- OA = Cooling with compressor not running
- 0B = Ice-making mode
- bit 0 (MSB) = in alarm mode
- bit 1 = run enabled
- bit 2 = local
- bit 3 = limited
- bit 4 = evaporator water flow

CGAM Operating Principles

This section contains an overview of the operation of CGAM air-cooled liquid chiller equipped with microcomputer-based control systems. It describes the overall operating principles of the CGAM water chiller.

Note: To ensure proper diagnosis and repair, contact a qualified service organization if a problem should occur.

General


The Model CGAM units are scroll compressor air-cooled liquid chillers. These units are equipped with unit-mounted starter/control panels and operates with R-410A refrigerant.

The basic components of an CGAM unit are:

- Unit-mounted panel containing starter and Tracer CH530 controller and Input/Output LLIDS
- Scroll compressors
- Brazed plate evaporator
- Air-cooled condenser with subcooler
- Electronic expansion valve
- Optional partial heat recovery
- Related interconnecting piping.

Components of a typical CGAM unit are identified in the following diagrams.

Figure 33. Slant 20-35 Ton Component Location

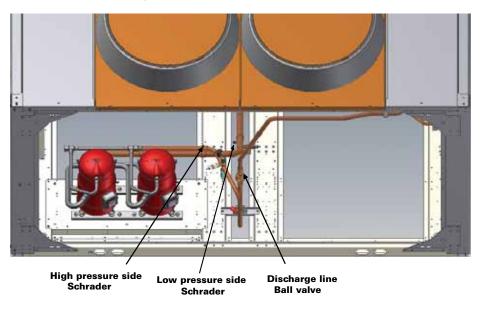
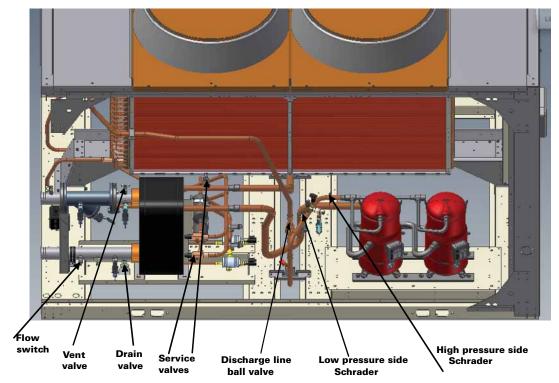



Figure 34. V 40-70 Ton Component Location - circuit 1

Figure 35. V 40-70 Ton Component Location- circuit 2

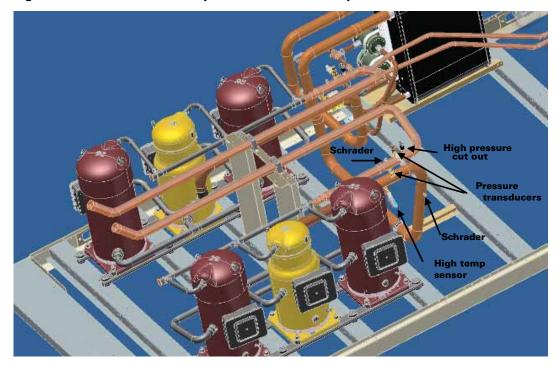
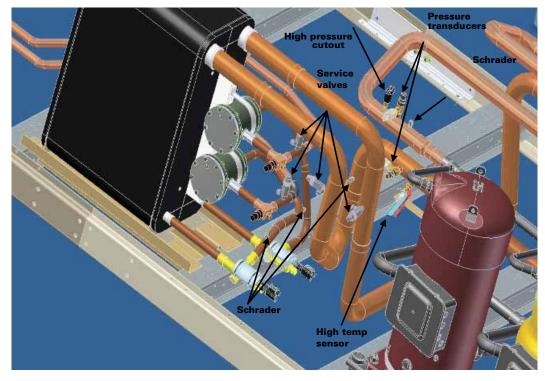



Figure 36. W 80-120 Ton Component Location - compressor view

Figure 37. W 80-120 Ton Component Location - evaporator side

Refrigerant Cycle

The refrigeration cycle of the Model CGAM chiller is conceptually similar to other Trane air-cooled chiller products. The CGAM chiller uses a brazed plate evaporator and an aircooled condenser. The compressors use suction gas cooled motors and an oil management system to provide almost oil-free refrigerant to the condenser and evaporator for maximum heat transfer while lubricating and sealing compressor bearings. The lubrication system helps to assure long compressor life and contributes to quiet operation.

Refrigerant condensers in the air-cooled heat exchanger which is available in three configurations—slant, V and W—based on the CGAM nominal tonnage cooling capacity. Liquid refrigerant is metered into the brazed plate evaporator using an electronic expansion valve to maximize chiller efficiency at full and part load operation.

The CGAM chiller is equipped with a unit-mounted starter and control panel. Microprocessor-based unit control modules (Trane Tracer[™] CH530) provide accurate chilled water control and provide monitoring, protection and adaptive limit functions. The adaptive nature of the controls intelligently prevent the chiller from operating outside of its limits, or compensates for unusual operating conditions while keeping the chiller running rather than simply shutting off the chiller. If problems do occur, the CH530 controls provide diagnostic messages to help the operator in troubleshooting.

Refrigerant Cycle Description

The CGAM refrigeration cycle is described using the pressure-enthalpy chart shown in Figure 38. Key State Points 1 through 5 are indicated on the chart. A schematic showing refrigerant components throughout the system is shown in Figure 39.

Refrigerant evaporation occurs in the brazed plate evaporator. Metered refrigerant vaporizes as it cools the chilled water or liquid flowing through the evaporator passages. The refrigerant vapor leaves the evaporator as superheated gas. State Point 1.

Refrigerant vapor generated in the evaporator flows to the compressor suction manifold where it enters and flows across the compressor motor windings to provide cooling. The vapor is then compressed in the compressor scroll chambers and discharged. Oil from the compressor sump lubricates the bearings and seals the small clearances between the compressor scrolls. Refrigerant vapor is discharged to the air-cooled condenser at State Point 2.

After the refrigerant vapor condenses into liquid (State Points 3 and 4) it is returned to the evaporator (State Point 5) where the refrigerant again flashes into vapor and the refrigeration cycle repeats.

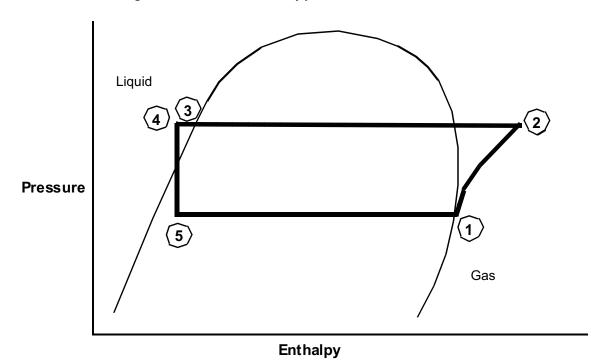
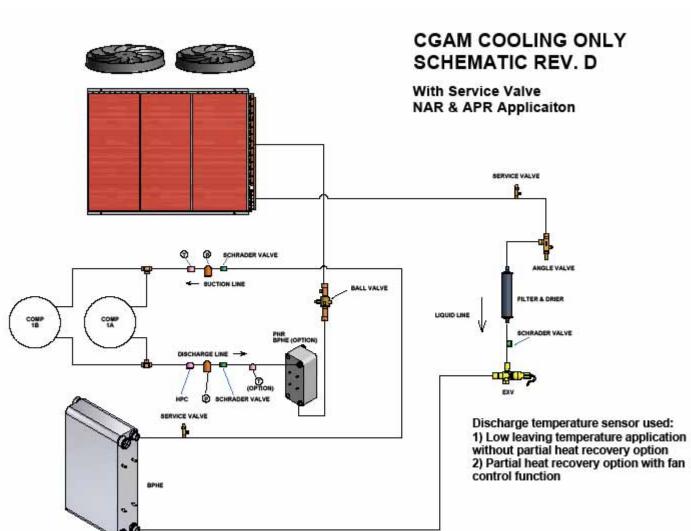
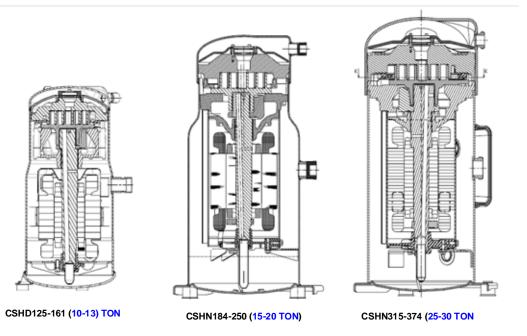



Figure 38. Pressure/Enthalpy Curve


Figure 39. CGAM Refrigerant Circuit

Oil System Operation (CGAM)

Overview

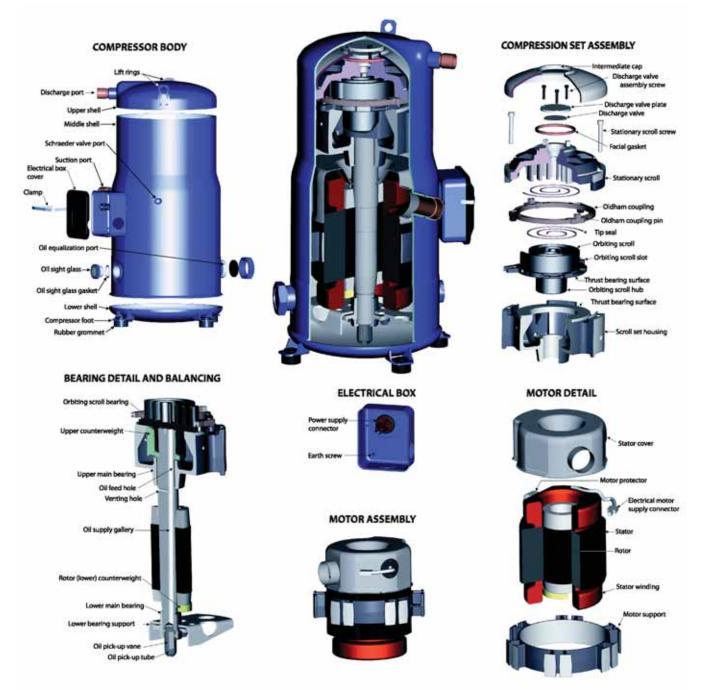

The oil is efficiently separated inside the scroll compressor and will remain in the scroll compressor during all run cycles. Between 1-2% of the oil circulates around with the refrigerant.

Figure 40. CGAM Scroll Compressor Sizes

CGAM Operating Principles

Figure 41. 10-15 Ton Compressor Internal Components

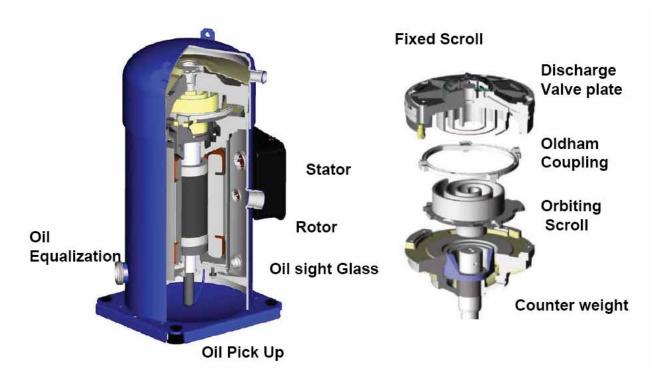


Figure 42. 15-30 Ton Compressor Internal Components

Controls Interface

CH530 Communications Overview

The Trane CH530 control system that runs the chiller consists of several elements:

- The main processor collects data, status, and diagnostic information and communicates commands to the starter module and the LLID (for Low Level Intelligent Device) bus. The main processor has an integral display (DynaView).
- Low level intelligent device (LLID) bus. The main processor communicates to each input and output device (e.g. temperature and pressure sensors, low voltage binary inputs, analog input/output) all connected to a four-wire bus, rather than the conventional control architecture of signal wires for each device.
- The communication interface to a building automation system (BAS).
- A service tool to provide all service/maintenance capabilities.

Main processor and service tool (TechView) software is downloadable from <u>www.trane.com</u>. The process is discussed later in this section under TechView Interface.

DynaView provides bus management. It has the task of restarting the link, or filling in for what it sees as "missing" devices when normal communications has been degraded. Use of TechView may be required.

The CH530 uses the IPC3 protocol based on RS485 signal technology and communicating at 19.2 Kbaud to allow 3 rounds of data per second on a 64-device network. A typical four-compressor CGAM will have around 30 devices.

Most diagnostics are handled by the DynaView. If a temperature or pressure is reported out of range by a LLID, the DynaView processes this information and calls out the diagnostic. The individual LLIDs are not responsible for any diagnostic functions.

Note: It is imperative that the CH530 Service Tool (TechView) be used to facilitate the replacement of any LLID or reconfigure any chiller component. TechView is discussed later in this section.

Controls Interface

Each chiller is equipped with a DynaView interface. The DynaView has the capability to display information to the operator including the ability to adjust settings. Multiple screens are available and text is presented in multiple languages as factory-ordered or can be easily downloaded from <u>www.trane.com</u>.

TechView can be connected to either the DynaView module and provides further data, adjustment capabilities, diagnostics information using downloadable software.

The DynaView share the same enclosure design: weatherproof and durable plastic for use as a stand-alone device on the outside of the unit or mounted nearby.

The display on DynaView is a 1/4 VGA display with a resistive touch screen and an LED backlight. The display area is approximately 4 inches wide by 3 inches high (102mm x 60mm).

Key Functions

In this touch screen application, key functions are determined completely by software and change depending upon the subject matter currently being displayed. The basic touch screen functions are outlined below.

Radio Buttons

Radio buttons show one menu choice among two or more alternatives, all visible. The radio button model mimics the buttons used on old-fashioned radios to select stations. When one is pressed, the one that was previously pressed "pops out" and the new station is selected. In the DynaView model the possible selections are each associated with a button. The selected button is darkened, presented in reverse video to indicate it is the selected choice. The full range of possible choices as well as the current choice is always in view.

Spin Value Buttons

Spin values are used to allow a variable setpoint to be changed, such as leaving water setpoint. The value increases or decreases by touching the increment (+) or decrement (-) arrows.

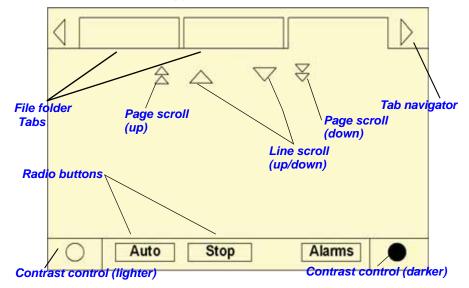
Action Buttons

Action buttons appear temporarily and provide the user with a choice such as **Enter** or **Cancel.**

Hot Links

Hot links are used to navigate from one view to another view.

File Folder Tabs


File folder tabs are used to select a screen of data. Just like tabs in a file folder, these serve to title the folder/screen selected, as well as provide navigation to other screens. In DynaView, the tabs are in one row across the top of the display. The folder tabs are separated from the rest of the display by a horizontal line. Vertical lines separate the tabs from each other. The folder that is selected has no horizontal line under its tab, thereby making it look like a part of the current folder (as would an open folder in a file cabinet). The user selects a screen of information by touching the appropriate tab.

Display Screens

Basic Screen Format

The basic screen format appears as:

The file folder tabs across the top of the screen are used to select the various display screens.

Scroll arrows are added if more file tabs (choices) are available. When the tabs are at the left most position, the left navigator will not show and only navigation to the right will be possible. Likewise when the right most screen is selected, only left navigation will be possible.

The main body of the screen is used for description text, data, setpoints, or keys (touch sensitive areas). The Chiller Mode is displayed here.

The double up arrows cause a page-by-page scroll either up or down. The single arrow causes a line by line scroll to occur. At the end of the page, the appropriate scroll bar will disappear.

A double arrow pointing to the right indicates more information is available about the specific item on that same line. Pressing it will bring you to a subscreen that will present the information or allow changes to settings.

The bottom of the screen (Fixed Display) is present in all screens and contains the following functions. The **left circular area** is used to reduce the contrast/viewing angle of the display. **The right circular area** is used to increase the contrast/viewing angle of the display. The contrast may require re-adjustment at ambient temperatures significantly different from those present at last adjustment.

The other functions are critical to machine operation. The AUTO and STOP keys are used to enable or disable the chiller. The key selected is in black (reverse video). The chiller will stop when the STOP key is touched and after completing the Shutting Down mode.

Touching the AUTO key will enable the chiller for active cooling if no diagnostic is present. (A separate action must be taken to clear active diagnostics.)

The AUTO and STOP keys, take precedence over the Enter and Cancel keys. (While a setting is being changed, AUTO and STOP keys are recognized even if Enter or Cancel has not been pressed.)

The ALARMS button appears only when an alarm is present, and blinks (by alternating between normal and reverse video) to draw attention to a diagnostic condition. Pressing the ALARMS button takes you to the corresponding tab for additional information.

Auto, Stop/Immediate Stop

The Auto and Stop keys will be presented as radio buttons within the persistent key display area. The selected key will be black.

The chiller will stop when the Stop key is touched, entering the Run Unload mode. An informational screen will be displayed for 5 seconds indicating that a second depression of an "Immediate Stop" key during this time period will result in an immediate stop. Pressing the "Immediate Stop" key while the immediate stop screen is displayed, will cause the unit to stop immediately, skipping operational pumpdown.

NOTICE Equipment damage!

Do NOT enable/disable the chiller by removing water flow or equipment damage can occur.

Touching the Auto key will arm the chiller for active cooling if no diagnostic is present. As in UCP2, a separate action must be taken to clear active diagnostics.

The AUTO and STOP, take precedence over the ENTER and CANCEL keys. (While a setting is being changed, AUTO and STOP keys are recognized even if ENTER or CANCEL has not been pressed.

Diagnostic Annunciation

When an active diagnostic is present, an Alarms key will be added to the persistent display area. This key will serve two purposes. The first purpose will be to alert the operator that a diagnostic exists. The second purpose is to provide navigation to a diagnostic display screen.

Diagnostic Screen

Main Reports Settings				
\bigtriangledown \bigtriangledown Reset Diags				
Operating Mode At Last Diagnostic 🛛 🕅				
[01] 10:56 PM Nov 26,2001				
Low Chilled Water Temp: Unit Off				
[02] 10:55 PM Nov 26,2001				
Low Evaporator Temp: Unit Off				
Auto Stop Alarms				

A complete listing of diagnostics and codes is included in the Diagnostic Section.

Manual Override Exists

An indicator to present the presence of a manual override will share space with the Alarms enunciator key. While a manual override exists, the space used for the Alarms key will be occupied by a "Manual" icon, that will display solid inverse color similar to the appearance of the Alarms enunciator. An Alarm will take precedence of the Manual, until the reset of active alarms, at which point the Manual indicator would re-appear if such an override exists.

If the Manual indicator is pressed, the Manual Control Settings screen will be displayed.

	会	7 2	7	¥		
0	Auto	Տեւթ		Manual	כ	•

Main Screen

The Main screen is a "dashboard" of the chiller. High level status information is presented so that a user can quickly understand the mode of operation of the chiller.

The Chiller Operating Mode will present a top level indication of the chiller mode (i.e. Auto, Running, Inhibit, Run Inhibit, etc.). The "additional info" icon will present a subscreen that lists in further detail the subsystem modes.

Main Reports	Bettings
	\forall
Chiller Mode: DD	Stopped
Circuit 1 Mode: DD	Stopped
Circuit 2 Mode: DD	Stopped
Evap Ent/Lvg Water Temp:	54.0/ 44.0 F
Cond Ent/Lvg Water Temp:	85.0/ 95.0 F
Active Chilled Water Setupints	DD 44.0 F
Auto Stop	•

The Main screen shall be the default screen. After an idle time of 30 minutes the CH530 shall display the Main screen with the first data fields.

The remaining items (listed in the following table) will be viewed by selecting the up/ down arrow icons.

Table 24. Main Screen Data Fields Table

Description	Units	Resolution	
Chiller Mode (>> submodes)	enumeration		
Circuit Mode (>> submodes)	enumeration		
Circuit 1 Mode (>> submodes)	enumeration		
Circuit 2 Mode (>> submodes)	enumeration		
Evap Ent/Lvg Water Temp	F/C	0.1	
Active Chilled Water Setpoint (>>source)	F / C	0.1	
Active Hot Water Setpoint (>>source)	F / C	0.1	
Active Demand Limit Setpoint (>>source)	%	1	
Outdoor Air Temperature	F/C	0.1	
Software Type	enumeration	Scroll	
Software Version		X.XX	

Chiller Operating Mode

The machine-operating mode indicates the operational status of the chiller. A subscreen with additional mode summary information will be provided by selection of an additional information icon (>>). The operating mode line will remain stationary while the remaining status items scroll with the up/down arrow keys.

Active Chilled Water Setpoint

The active chilled water setpoint is the setpoint that is currently in use. It results from the logical hierarchy of setpoint arbitration by the main processor. It will be displayed to 0.1 degrees Fahrenheit or Celsius.

Touching the double arrow to the left of the Active Chilled Water Setpoint will take the user to the active chilled water setpoint arbitration sub-screen.

Active Chilled Water Subscreen

The active chilled water setpoint is that setpoint to which the unit is currently controlling. It is the result of arbitration between the front panel, BAS, schedule, external, and auxiliary setpoints (schedule and auxiliary not shown in the following diagram), which in turn may be subjected to a form of chilled water reset.

Back						
Active Chilled Water Setpt Arbitration						
Front Panel	44.0 F	A	ctive			
BAS	48.0 F					
Enternal	46.0 F					
Chilled Water Reset:		Disa	bled			
Active Chilled Water	Betpoint	a)	4.0 F			
	stop		•			

The chilled water reset status area in the right most column will display one of the following messages

- Return
- Constant Return
- Outdoor
- Disabled

The left column text "Front Panel", "BAS" or "Schedule", "External", "Auxiliary", "Chilled Water Reset", and "Active Chilled Water Setpoint" will always be present regardless of installation or enabling those optional items. In the second column "-----" will be shown if that option is Not Installed, otherwise the current setpoint from that source will be shown.

Setpoints that are adjustable from the DynaView (Front Panel Chilled Water Setpoint, Auxiliary Chilled Water Setpoint) will provide navigation to their respective setpoint change screen via a double-arrow to the right of the setpoint source text. The setpoint change screen will look identical to the one provided in the Chiller Setpoints screen. The "Back" button on the setpoint change screen provides navigation back to the setpoint arbitration screen.

The "Back" button on the setpoint arbitration screen provides navigation back to the chiller screen.

Other Active Setpoints

The Active Demand Limit Setpoint will behave the same was as the Active Chilled Water Setpoint, except that its units are in percent and there is an Ice Building source in place of the Auxiliary source. Front Panel Demand Limit Setpoint will provide navigation to its setpoint change screen.

Password-Protected Settings

The user can change some settings from the DynaView display on the chiller. Other settings are password-protected. In order to change these setting the password is 314.

Settings Screen

The Settings screen provides a user the ability to adjust settings necessary to support daily tasks. The layout provides a list of sub-menus, organized by typical subsystem. This organization allows each subscreen to be shorter in length which should improve the user's navigation.

A sample Settings screen is a list of the subsystems as shown below.

	Main	Reports	Settings			
Chill	Chiller 🕅					
Feat	ure Settings			DD		
Cont	rol Settings			DD		
Man	Manual Control Settings 🛛 🔊					
Disp	Display Settings 🛛 🕅 🕅					
0	Auto	Stop		\bullet		

Settings Sub-Screens - Table of Text, Data, Ranges, etc.

Below is the table of text, resolution, field size, enumerated selections, and data for Settings subscreens. See the functional specification "CGAM Settings and Setpoints" for further information such as ranges and operation.

Table 25. Unit

	Resolution or	
Description	(Enumerations)	Units
Front Panel Cool	Cool	Enum
Front Panel Chilled Water Setpt:	+ or - XXX.X	Temperature
Auxiliary Chilled Water Setpt:	+ or - XXX.X	Temperature
Front Panel Demand Limit Setpt:	XXX	Percent
Front Panel Ice Build Cmd:	On/Auto	Enum
Front Panel Ice Termn Setpt:	+ or - XXX.X	Temperature
Front Panel Noise Stb Cmd:	On/Auto	Enum
Setpoint Source:	(BAS/Ext/FP, Ext/ Front Panel, Front Panel), BAS/Ext/FP	Enum

Table 26. Feature Settings

	Resolution or (Enumerations), Default	Units
Description		
Power-Up Start Delay:	10 seconds	Seconds (MM:SS)
Cool Low Ambient Lockout:	(Enable, Disable), Enable	Enum
Cool Low Ambient Lockout Stpt:	+ or - XXX.X	Temperature
Water Pump Off Delay:	1 minute	Minutes (HH:MM)
Ice Building:	(Enable, Disable), Disable	Enum
PHR Fan Control:	(Enable, Disable), Disable	Enum
Local Time of Day Schedule	Subscreen (see below)	
External/BAS	Subscreen (see below)	
Chilled Water Reset	Subscreen (see below)	

Table 27. External/BAS Feature Settings (subscreen of Feature Settings)

Description	Resolution or (Enumerations), Default	Units
Ext Chilled Setpt:	(Enable, Disable), Disable	Enum
Ext Demand Limit Setpoint:	(Enable, Disable), Disable	Enum
Max Capacity Debounce Time:	30 seconds	Seconds (MM:SS)
Limit Annunc Debounce Time:	30 seconds	Seconds (MM:SS)
LCI-C Diag Encoding:	(Text, Code) Text	Enum
LCI-C Diag Language:	(English, Selection 2, Selection 3) English (0)	Enum

	Resolution or (Enumerations),	
Description	Default	Units
hilled Water Reset:	(Const Return, Outdoor, Return, Disable), Disable	Enum
eturn Reset Ratio:	XXX	Percent
eturn Start Reset:	XXX.X	Temperature
turn Maximum Reset:	XXX.X	Temperature
tdoor Reset Ratio:	XXX	Percent
tdoor Start Reset:	XXX.X	Temperature
door Maximum Reset:	XXX.X	Temperature

Table 28. Chilled Water Reset Feature Settings (subscreen of Feature Settings)

Table 29. Control Settings

Description	Resolution or (Enumerations), Default	Units
Cooling Design Delta Temp:	XXX.X	Delta Temperature
Heating Design Delta Temp:	XXX.X	Delta Temperature
Differential to Start:	XXX.X	Delta Temperature
Differential to Stop:	XXX.X	Delta Temperature
Staging Deadband Adjustment:	XXX.X	Delta Temperature
Capacity Control Softload Time:	120 seconds	Seconds (MM:SS)
Circuit Staging Option:	(Bal Starts/Hrs, Circuit 1 Lead, Circuit 2 Lead), Bal Starts/Hrs	Enum
Compressor Staging Option:	(Fixed, Bal Starts/Hrs)	Enum
Leaving Water Temp Cutout:	XX.X	Temperature
Low Refrigerant Temp Cutout:	XX.X	Temperature
Evap Flow Overdue Wait Time:	30 seconds	Seconds (MM:SS)
Disch Press Limit Setpt:	85%	Percent
Disch Press Limit Unload Setpt:	97%	Percent

Table 30. System Manual Control Settings

Description	Resolution or (Enumerations), Default	Units	Monitor Value
Evap Water Pump	(Auto, On), Auto	Enum	 Evap Flow status Override Time Remaining
Clear Restart Inhibit Timer	(Clear Timer)		1) Restart Inhibit Time (composite value)
Capacity Control	(Auto, Manual) Auto	Enum	
Binding	Special	Special	None

Table 31.	Circuit	Manual	Control	Settings
-----------	---------	--------	---------	----------

Description	Resolution or (Enumerations), Default	Units	Monitor Value
Front Panel Ckt Lockout	(Not Locked Out, Locked Out), Not Locked Out	Enum	
Cprsr A Lockout	(Not Locked Out, Locked Out), Not Locked Out	Enum	
Cprsr B Lockout	(Not Locked Out, Locked Out), Not Locked Out	Enum	
Cprsr C Lockout	(Not Locked Out, Locked Out), Not Locked Out	Enum	
Manual EXV Control:	(Auto, Manual), Auto	Enum	
Manual EXV Position Cmd:	XXX	Percent	EXV Status Suction Pressure
Cooling EXV Manual Ctrl:	(Auto, Manual), Auto	Enum	
Cooling EXV Manual Position Cmd:	XXX	Percent	EXV Status Suction Pressure
Cprsr A Pumpdown	Status: (Avail, Not Avail, Pumpdown) Override Subscreen command buttons: (Abort, Pumpdown) - <i>button is either grayed out</i> <i>or not shown if not available</i>	Enum	Suction Pressure
Cprsr B Pumpdown	Status: (Avail, Not Avail, Pumpdown) Override Subscreen command buttons: (Abort, Pumpdown) - <i>button is either grayed out</i> <i>or not shown if not available</i>	Enum	Suction Pressure
Cprsr C Pumpdown	Status: (Avail, Not Avail, Pumpdown) Override Subscreen command buttons: (Abort, Pumpdown) - <i>button is either grayed out</i> <i>or not shown if not available</i>	Enum	Suction Pressure

Local Time of Day Schedule Screen

To access the Local Time of Day Schedule Screen this option must be installed in TechView. This option will then be shown under the Feature Settings screen.

This screen shows the overall feature enable/disable setting, plus a listing of all 10 events, including their event time and active days of the week.

				$\overline{\frown}$	8	
Local Time	of Day	y Sch	edule	:	Ena	ble
Event 1:					10:47	AM
MON TUE	WED	THU	FRI	SAT	SUN	
Event 2:					11:50	PM
				SAT	SUN	

Local Settings Event Screen

This screen displays the details for a particular event, including the active days, event time, and the Local Schedule arbitrated setpoints. Selecting a given item will allow the user to modify it.

\sim	\otimes
Event:	Enable
Active Days:	
MON TUE WED THU FRI SAT	SUN
Event Time:	10:47 AM
Unit:	Auto
Control Mode:	Cool
Auto Stop Ala	arms
へ会 Control Mode:	Cool
Chilled Water Setpt:	7°C
NO STRUCTURE CONTRACTOR OF STRUCTURE	40°C
Hot Water Setpt:	
Hot Water Setpt: Demand Limit Stpt:	

Event Enable/Disable Screen

	Disable]
	Enable	l,
Press Button	to Select	

Event Active Days Screen

This screen is unusual because it does not use radio buttons, which only allow one active selection at a time. These buttons are more like "selection buttons" or check boxes. The user can select any combination of days, or none at all.

Monday	Tuesday	Wednesday
Thursday	Friday	Saturday
	Sunday	

Event Time Screen

		10:47 AM
Hours	Minutes	
Enter	Cancel	$ riangle \nabla$
	to Change to Save Change to Ignore Char	nge

For analog setpoints, the screen is slightly different than the standard screen, because there are two additional buttons - "Used" and "Not Used". Selecting "Used" will make the setting valid and allow the user to change the value. Selecting "Not Used" will make the setting invalid, and will not allow the user to change the value.

Chilled Wat	er Setpt:	7 C
Used	Not Used	
Enter	Cancel	$ riangle \nabla$
	s to Change to Save Change	

Table 32. Display Settings

Description	Resolution or (Enumerations), Default	Units
Date Format	("mmm dd, yyyy", "dd-mmm-yyyy"), "mmm dd, yyyy	Enum
Date ⁴		
Time Format	(12-hour, 24-hour), 12-hour	Enum
Time of Day ⁴		
Keypad/Display Lockout ³	(Enable, Disable), Disable	Enum
Display Units	(SI, English), English	Enum
Pressure Units	(Absolute, Gauge), Gauge	Enum
Local Atmospheric Pressure:	XXX.X	Pressure (always absolute)
Language ¹	(English, Selection 2, Selection 3), English (0)	Enum

(1) Language choices are dependent on what the Service Tool has setup in the Main Processor. Get Radio Button names from Main Processor setups. Language selections will include English and qty 2 alternate as loaded by TechView.

(2) Temperatures will be adjustable to 0.1 deg F or C. The Main Processor will provide the minimum and maximum allowable value.

(3) Enables a DynaView Lockout screen. All other screens time-out in 30 minutes to this screen. The DynaView Lockout Screen will have 0-9 keypad to permit the user to re-enter the other DynaView screens with a fixed password. See below for further details.

(4) The Date and Time setup screen formats deviate slightly from the standard screens defined above. See the alternate screen layouts below.

(5) Language shall always be the last setting listed on the Control Settings menu (which will also always be the last item listed on the Settings menu list). This will allow a user to easily find language selection if looking at an unrecognizable language.

(6) The pump on mode terminates after 60 minutes.

Upon selecting a Settings list all setpoints available to change along with their current value will appear. The operator selects a setpoint to change by touching either the verbal description or setpoint value. Doing this causes the screen to switch to either the Analog Settings Subscreen or the Enumerated Settings Subscreen.

Analog Setting Subscreens

Analog Settings Subscreen displays the current value of the chosen setpoint in the upper ¹/₂ of the display. It is displayed in a changeable format consistent with its type. Binary setpoints are considered to be simple two state enumerations and will use radio buttons. Analog setpoints are displayed as spin buttons. The lower half of the screen is reserved for help screens.

8-	ck		
Front Pa	nel Chilled Water Setpt:		44.0 F
E	nter Cancel	\bigtriangleup	\bigtriangledown
Press Ar	rows to Change		
Press En	ter to Save Change		
Press Ce	nc el to Ignore Change		
\circ	Auto Ship		•

All setpoint subscreens will execute the equivalent of a Cancel key if any display activities cause the subscreen to be left before a new setpoint is entered. E.g. if the Alarms key is pressed before a new setpoint is entered, the new setpoint will be cancelled. The same applies to any time-outs.

Pressing the Auto or Stop keys will not cause a cancel since the setpoint subscreen is not left on this action.

Enumerated Settings Subscreen

The enumerated setpoint subscreen has no cancel or enter key. Once a radio key is depressed the item is immediately set to the new enumeration value.

A Back	
Time Format:	12 Hour
12 Hour	
Z4 Hour	
Press Button to Select	
Auto Ship	

Mode Override Subscreens

The Mode Override subscreen has no cancel or enter key. Once a radio key is depressed that new value is immediately assumed.

Mode Override for Enumerated Settings is shown below:

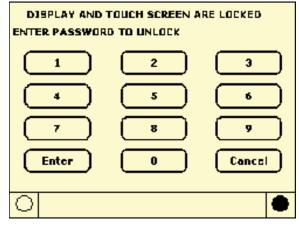
d Back	
Ewap Water Pump:	Auto
Auto On)
Manual Override Time Remaining: 6	0:00
Evep Weter Flow Switch Status: No	Flow
Press Button to Select	

Date/Time Subscreen

The setpoint screen for setting up the CH530 date is shown below: The user must select Day, Month, or Year and then use the up/down arrows to adjust.

A Back	
Date: Sep 28,2	2001
Day Month Year	
Enter Cancel 🔨 🔨	\checkmark
Press Arrows to Change	
Press Enter to Bave Change	
Press Concel to Ignore Change	
Auto Ship	٠

The setpoint screen for setting up the CH530 time with a 12 hour format is shown below: The user must select Hour, or Minute and then use the up/down arrows to adjust. Adjusting hours will also adjust am/pm.


Back	
Time of Day: 11:3	3 AM
Hour Minute	
Enter Cancel 🔨 🔨	$\overline{}$
Press Arrows to Change	
Press Enter to Bave Change	
Press Concel to Ignore Change	
Auto Step	•

Lockout Screen

The DynaView Display and Touch Screen Lock screen is shown. This screen is used if the Display and Touch Screen Lock feature is Enabled. Thirty minutes after the last key stroke this screen will be displayed and the Display and Touch Screen will be locked out until "159 Enter" is entered.

Until the proper password is entered there will be no access to the DynaView screens including all reports, all setpoints, and Auto/Stop/Alarms/Interlocks. The password "159" is not programmable from either DynaView or TechView.

If the Display and Touch Screen Lock feature is Disabled, a similar screen including "Enter 159 to Unlock" will show if the MP temperature is approximately less than 32°F (0°C) and it has been 30 minutes after the last key stroke. Note: the main processor is equipped with an on-board temp sensor which enables the ice protection feature (OAT is not required).

Freezing rain can form on the touch panel and actuate the touch screen as the rain freezes on its surface. A specific pattern of key presses will avoid this issue.

Reports

The Reports tab will allow a user to select from a list of possible reports headings (i.e. Custom, ASHRAE Guideline 3, Refrigerant, etc.) Each report will generate a list of status items as defined in the tables that follow:

	Main	Reports	Bettings	
Eyap	orator			ÞÞ
Cond	enser			ÞÞ
Com	pressor			ÞÞ
ASHR	AE Chiller Log			ÞÞ
0	Auto	Տերը	Alarms	•

Historic Diagnostics are also included in this menu.

Table 33. Report name: System Evaporator

Description	Resolution	Units
Evap Entering Water Temp:	+ or - XXX.X	Temperature
Evap Leaving Water Temp:	+ or - XXX.X	Temperature
Evap Pump Inverter 1 Run Cmd:	On, Off	Enumeration
Evap Pump 1 Command:	On, Off	Enumeration
Evap Pump 2 Command:	On, Off	Enumeration
Evap Water Flow Switch Status:	Flow, No Flow	Enumeration

Table 34. Report name: Circuit Evaporator

Description	Resolution	Units
Suction Pressure	XXX.X	Pressure
Suction Saturated Rfgt Temp:	+ or - XXX.X	Temperature
Suction Temperature:	+ or - XXX.X	Temperature
Evap Approach Temp:	+ or - XXX.X	Temperature
EXV Position Status:	XXX.X	Percent
Heating EXV Position Status:	XXX.X	Percent

Table 35. Report name: System Condenser

Description	Resolution	Units
Outdoor Air Temperature:	+ or - XXX.X	Temperature
Heat Rcvy Entering Water Temp:	+ or - XXX.X	Temperature
Heat Rcvy Leaving Water Temp:	+ or - XXX.X	Temperature

Table 36. Report name: Circuit Condenser

Description	Resolution	Units
Discharge Pressure:	XXX.X	Pressure
Discharge Saturated Rfgt Temp:	+ or - XXX.X	Temperature
Discharge Temperature:	+ or - XXX.X	Temperature
Cond Approach Temp:	+ or - XXX.X	Temperature
Current Air Flow:	XXX.X	Percent

Table 37. Report name: System Compressor

Description	Resolution	Units
Chiller Running Time:	XXXX:XX	hr: min

Table 38. Report name: Circuit Compressor

Description	Resolution	Units	
Compressor A Starts:	XXXX	Integer	
Compressor A Running Time:	XXXX:XX	hr: min	
Compressor B Starts:	XXXX	Integer	
Compressor B Running Time:	XXXX:XX	hr: min	
Compressor C Starts:	XXXX	Integer	
Compressor C Running Time:	XXXX:XX	hr: min	

Table 39. Report name: System ASHRAE Chiller Log

Description	Resolution	Units
Current Time/Date:	XX:XX mmm dd, yyyy	Date / Time
Chiller Mode:		Enum
Active Chilled Water Setpoint:	XXX.X	Temperature
Active Hot Water Setpoint:	XXX.X	Temperature
Evap Entering Water Temp:	XXX.X	Temperature
Evap Leaving Water Temp:	XXX.X	Temperature
Evap Water Flow Switch Status:		Enum
Outdoor Air Temperature:	XXX.X	Temperature
Active Demand Limit Setpoint:	XXX	Percent

Table 40. Report name: Circuit ASHRAE Chiller Log

Description	Resolution	Units
Circuit Mode:		Enum
Suction Pressure:	XXX.X	Pressure
Suction Saturated Rfgt Temp:	XXX.X	Temperature
Evap Approach Temp:	XXX.X	Temperature
Discharge Pressure:	XXX.X	Pressure
Discharge Saturated Rfgt Temp:	XXX.X	Temperature
Cond Approach Temp:	XXX.X	Temperature
Compressor A Starts:	XXXX	Integer
Compressor A Running Time:	XX: XX	Hours: Minute
Compressor B Starts:	XXXX	Integer
Compressor B Running Time:	XX: XX	Hours: Minute
Compressor C Starts:	XXXX	Integer
Compressor C Running Time:	XX:XX	Hours: Minute

Power Up and Self Tests

Power-Up DynaView

On Power-Up DynaView will progress through three screens:

First Screen, Application Status, Boot Software P/N, Self Test and Application Time Stamp.

This screen will display for 3-10 seconds. This screen will give the status of the Application software, the Boot Software P/N, display Self Test results and display the Application Part Number (CGAM 6200-0450-01). The contrast will also be adjustable from this screen. The message "Selftest Passed" may be replaced with "Err2: RAM Error" or "Err3: CRC Failure"

App. Present Running Selftest Selftest Passed
Application Part Number: 6200-0944-01.00
Boot Boftware Part #: L6 Flash -> 6200-0318-07 N6 Flash -> 6200-0319-07

Display Formats

Temperature settings can be expressed in F or C, depending on Display Units settings.

Pressure settings can be expressed in psia, psig, kPaa (kPa absolute), or kPag (kPa gauge) depending on Display Units settings.

Dashes ("-----") appearing in a temperature or pressure report, indicates that the value is invalid or not applicable.

Languages

The languages for DynaView will reside in the main processor. The main processor will hold three languages, English, and two alternate languages. The service tool (TechView) will load the main processor with user selected languages from a list of available translations.

TechView

TechView is the PC (laptop) based tool used for servicing Tracer CH530. Technicians that make any chiller control modification or service any diagnostic with Tracer CH530 must use a laptop running the software application "TechView." TechView is a Trane application developed to minimize chiller downtime and aid the technicians understanding of chiller operation and service requirements.

Note: Important: Performing any Tracer CH530 service functions should be done only by a properly trained service technician. Please contact your local Trane service agency for assistance with any service requirements.

TechView software is available via Trane.com.

(http://www.trane.com/commercial/software/tracerch530/)

This download site provides a user the TechView installation software and CH530 main processor software that must be loaded onto your PC in order to service a CH530 main processor. The TechView service tool is used to load software into the Tracer CH530 main processor.

Minimum PC requirements to install and operate TechView

- Pentium II or higher processor
- 128Mb RAM
- 1024 x 768 resolution of display
- 56K modem
- 9-pin RS-232 serial connection
- Operating system Windows 2000
- Microsoft Office (MS Word, MS Access, MS Excel)
- Parallel Port (25-pin) or USB Port

Note: TechView was designed for the preceding listed laptop configuration. Any variation will have unknown results. Therefore, support for TechView is limited to only those operating systems that meet the specific configuration listed here. Only computers with a Pentium II class processor or better are supported; Intel Celeron, AMD, or Cyrix processors have not been tested.

TechView is also used to perform any CH530 service or maintenance function. Servicing a CH530 main processor includes:

- Updating main processor software
- Monitoring chiller operation
- Viewing and resetting chiller diagnostics
- Low Level Intelligent Device (LLID) replacement and binding
- Main processor replacement and configuration modifications
- Setpoint modifications
- Service overrides

Software Download

Instructions for First Time TechView Users

This information can also be found at http://www.trane.com/commercial/software/ tracerch530/.

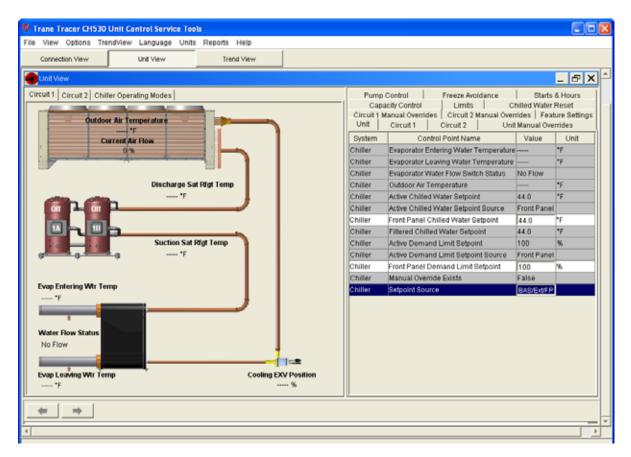
- 1. Create a folder called "CH530" on your C:\ drive. You will select and use this folder in subsequent steps so that downloaded files are easy to locate.
- 2. Download the Java Runtime installation utility file onto your PC in the CH530 folder (please note that this does not install Java Runtime, it only downloads the installation utility).
 - Click on the latest version of Java Runtime shown in the TechView Download table.
 - Select "Save this program to disk" while downloading the files (do not select "Run this program from its current location").
- Download the TechView installation utility file onto your PC in the CH530 folder (please note that this does not install TechView, it only downloads the installation utility).
 - Click on the latest version of TechView shown in the TechView Download table.
 - Select "Save this program to disk" while downloading the files (do not select "Run this program from its current location").
- 4. Remember where you downloaded the files (the "CH530" folder). You will need to locate them to finish the installation process.
- 5. Proceed to "Main Processor Software Download" page and read the instructions to download the latest version of main processor installation files.

Note: you will first select the chiller type to obtain the available file versions.

Unit View

Unit view is a summary for the system organized by chiller subsystem. This provides an overall view of chiller operating parameters and gives you an "at-a-glance" assessment of chiller operation.

The Control Panel tab displays important operating information for the unit and allows you to change several key operating parameters. The panel is divided into four or more sub-panels (depending on the number of circuits in the unit).


The Operating Mode tab displays the unit, circuit and compressor top level operating modes.

The Hours and Starts tab displays the number a hours (total) a compressor has run and the number of times the compressor has started. This window plays a key role in evaluating maintenance requirements.

Upon successful Local Connect TechView will display UNIT VIEW.

CGAM Unit View is shown below:

The Unit View displays the system, control point name, value and unit of measure. It reflects active setpoints and allows you to make changes.

Unit View also displays, in real time, all non-setpoint data organized by tabs. As data changes on the chiller it is automatically updated in the Unit View.

Figure 44. Unit View Tabs

Pump Control		Freeze Avoi	dance	Starts & Hours		
Ć a	Capacity Control		Cr	nilled Water Reset		
Circuit 1	Circuit 1 Manual Overrides		tanual Over	rides Feature Settings		
Unit	Circuit 1	Circuit 2	Unit	Manual Overrides		

Circuit/Compressor Lockout

In order to lock out a circuit the user must go to the Unit View/Circuit 1 Manual Overrides Tab and then select the Front Panel Lockout for circuit 1 and/or circuit 2. It is also possible to lockout individual compressors from the same Circuit 1 Manual Overrides Tab in this view.

Tab	Item Type	Units	Min Value	Max Value	Default Value
Unit Tab					
Evaporator Entering Water Temperature	Status	Temp (°C)			
Evaporator Leaving Water Temperature	Status	Temp (°C)			
Evaporator Water Flow Switch Status	Status	Flow/No Flow			
Outdoor Air Temperature	Status	Temp (°C)			
Active Chilled Water Setpoint	Status	Temp (°C)			
Active Chilled Water Setpoint Source	Status	BAS/External/Front Panel/Auxiliary/ Schedule			
Front Panel Chilled Water Setpoint	Setting	Temp (°C)	CapacityControl Chilled Water Setpoint	20°C	6.7°C
BAS Chilled Water Setpoint	Status	Temp (°C)			
Local Schedule Chilled Water Setpoint	Status	Temp (°C)			
External Chilled Water Setpoint	Status	Temp (°C)			
Auxiliary Chilled Water Setpoint	Status	Temp (°C)			
Filtered Chilled Water Setpoint	Status	Temp (°C)			
Active Demand Limit Setpoint	Status	%			
Active Demand Limit Setpoint Source	Status	BAS/External/Front Panel/Auxiliary/ Schedule			
Front Panel Demand Limit Setpoint	Setting	%	Smallest Capacity Step	100	100
BAS Demand Limit Setpoint	Status	%			

Tab	Item Type	Units	Min Value	Max Value	Default Value
Local Schedule Demand Limit Setpoint	Status	%			
External Demand Limit Setpoint	Status	%			
Active Ice Building Command	Status	Off /On			
Front Panel Ice Building Command	Setting	Auto	No Request	Ice Building Request	No Request
Active Ice Termination Setpoint	Status	Temp (°C)			
Front Panel Ice Termination Setpoint	Setting	Temp (°C)	-6.67°C	0°C	-2.78°C
Manual Override Exists	Status	False/True			
Setpoint Source	Setting	BAS/Ext/FP			
Circuit 1 Tab					
Suction Pressure	Status	Pressure (kPa)			
Discharge Pressure	Status	Pressure (kPa)			
Suction Saturated Refrigerant Temperature	Status	Temp (°C)			
Suction Temperature	Status	Temp (°C)			
Discharge Saturated Refrigerant Temperature	Status	Temp (°C)			
Discharge Temperature	Status	Temp (°C)			
Condenser Approach Temperature	Status	Temp (°C)			
Evaporator Approach Temperature	Status	Temp (°C)			
EXV Position Status (%)	Status	%			
Circuit 2 Tab					
Suction Pressure	Status	Pressure (kPa)			
Discharge Pressure	Status	Pressure (kPa)			
Suction Saturated Refrigerant Temperature	Status	Temp (°C)			
Suction Temperature	Status	Temp (°C)			
Suction Superheat	Status	Delta Temp (°C)			
Discharge Saturated Refrigerant Temperature	Status	Temp (°C)			
Discharge Temperature	Status	Temp (°C)			
Condenser Approach Temp	Status	Temp (°C)			
Evaporator Approach Temp	Status	Temp (°C)			
EXV Position Status (%)	Status	%			
Unit Manual Overrides Tab					
Manual Capacity Control	Setting	Auto/Manual			
Manual Capacity Control Command	Setting	Unload/Hold/Load			
Clear Restart Inhibit	Setting				
Maximum Restart Inhibit Time Remaining	Status	Time (Seconds to MM: SS)			
Manual Evaporator Pump Control	Setting	Auto/On			
Manual Evaporator Pump Override Time	Status	Time (Seconds to MM:SS)			
Circuit 1 Manual Overrides Tab					
Front Panel Lockout	Setting	Not Locked/Locked			

Tab	Item Type	Units	Min Value	Max Value	Default Value
Compressor A Lockout	Setting	Not Locked/Locked			
Compressor B Lockout	Setting	Not Locked/Locked			
Compressor C Lockout	Setting	Not Locked/Locked			
Manual EXV Control	Setting	Auto/Manual			
Manual EXV Control Percent	Setting	%			
Compressor 1A Pumpdown Command	Setting	Abort			
Compressor 1A Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Compressor 1B Pumpdown Command	Setting	Abort/Start			
Compressor 1B Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Compressor 1C Pumpdown Command	Setting	Abort/Start			
Compressor 1C Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Suction Pressure	Status	Pressure (kPa)			
Circuit 2 Manual Overrides Tab					
Front Panel Lockout	Setting	Not Locked/Locked	Auto	Stop	Auto
Compressor A Lockout	Setting	Not Locked/Locked	Auto	Stop	Auto
Compressor B Lockout	Setting	Not Locked/Locked	Auto	Stop	Auto
Compressor C Lockout	Setting	Not Locked/Locked	Auto	Stop	Auto
Manual EXV Control	Setting	Auto/Manual			
Manual EXV Control Percent	Setting	%			
Compressor 2A Pumpdown Command	Setting	Abort/Start			
Compressor 2A Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Compressor 2B Pumpdown Command	Setting	Abort/Start			
Compressor 2B Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Compressor 2C Pumpdown Command	Setting	Abort/Start			
Compressor 2C Pumpdown Status	Status	Available/Not Available/In Progress/Inhibited			
Suction Pressure	Status	Pressure (kPa)			
Feature Settings Tab					
Local Atmospheric Pressure	Setting	Pressure (kPa)	68.9 kPa	110.3 kPa	101.4 kPa
Power-Up Start Delay	Setting	Time (Seconds)	0	600	0
Operational Pumpdown Temperature Setpoint	Setting	Temp (°C)	-26°C	-10°C	-17.78°C
External Chilled Water Setpoint	Setting	Disable/Enable			Disabled
External Demand Limit Setpoint	Setting	Disable/Enable			Disabled

Tab	Item Type	Units	Min Value	Max Value	Default Value
Limit Annunciation Debounce Time	Setting	Time (Seconds)	0s	3600s	1200s
Maximum Capacity Annunciation Debounce Time	Setting	Time (Seconds)	Os	3600s	1200s
Ice Building Feature	Setting	Disable/Enable			Disabled
EXV Recalibration Time	Setting	Time (Seconds)	?	?	
Capacity Control Tab					
Cooling Design Delta Temperature	Setting	Delta Temp (°C)	1°C	12°C	5.56°C
Differential To Start	Setting	Delta Temp (°C)	1°C	6°C	2.78°C
Differential To Stop	Setting	Delta Temp (°C)	1°C	7°C	2.78°C
Staging Deadband Adjustment	Setting	Delta Temp (°C)	-1°C	5°C	0°C
Circuit Staging Option	Setting	Balance Strts-Hrs/ Circuit 1 Lead/ Circuit 2 Lead			Balance Starts Hours
Compressor Staging Option	Setting	Fixed Sequence/ Balanced Strts-Hrs			Fixed Sequence
Compressor Start Delay Time	Setting	Time (Seconds)	0 s	600 s	60 s
Capacity Control Softload Time	Setting	Time (Seconds)	0 s	3600 s	900 s
Limits Tab					
Cooling Low Ambient Lockout	Setting	Disable/Enable			Enabled
Cooling Low Ambient Lockout Setpoint	Setting	Temp (°C)	-20°C	20°C	-10°C
Discharge Pressure Limit Setpoint	Setting	%	80%	120%	85%
Discharge Pressure Limit Unload Setpoint	Setting	%	90%	120%	97%
Restart Inhibit Free Starts	Setting	Starts			2
Restart Inhibit Start To Start Time	Setting	Time (Minutes)			6 min
Chilled Water Reset Tab					
Chilled Water Reset Type	Setting	Disable/Return/ Outdoor Air/ Constant			
Return Reset Ratio	Setting	%	10%	120%	50%
Return Start Reset	Setting	Delta Temp (°C)	2.22°C	16.67°C	5.55°C
Return Maximum Reset	Setting	Delta Temp (°C)	0°C	11.11°C	2.78°C
Outdoor Reset Ratio	Setting	%	-80%	80%	10%
Outdoor Start Reset	Setting	Temp (°C)	10°C	54.44°C	32.22°C
Outdoor Maximum Reset	Setting	Delta Temp (°C)	0°C	11.11°C	2.78°C
Cooling Design Delta Temperature	Setting	Delta Temp (°C)	1°C	12°C	5.56°C
Pump Control Tab					
Evaporator Water Flow Switch Status	Status	No Flow/Flow			
Evap Pump Inverter 1 Run Command	Status	Off/On			
Evaporator Pump 1 Command	Status	Off/On			
Evaporator Pump 2 Command	Status	Off/On			
Evap Pump Off Delay	Setting	Time (Minutes)	0 min	30 min	1 min
Evap Flow Overdue Wait Time	Setting	Time (Seconds)	300 s	3600 s	1200 s

Table 41. Unit View Tabs - Detail

Tab	Item Type	Units	Min Value	Max Value	Default Value
High Evaporator Water Temp Setpoint	Setting	Temp (°C)			55°C
Freeze Avoidance Tab					
Leaving Water Temp Cutout	Setting	Temp (°C)	-18.33°C	2.22°C	2.22°C
Low Refrigerant Temperature Cutout	Setting	Temp (°C)	-28.33°C	2.22°C	-5.56°C
Evaporator Pump Freeze Avoidance	Setting	Disable/Enable			Enabled
Evap Pump Freeze Avoidance Adaptive Learning	Setting	Fixed/Adaptive			Enabled
Evap Pump Freeze Avoidance Time Constant	Setting	Time (minutes)	2 min	360 min	10 min
Evap Pump Freeze Avoidance Temp Margin	Setting	Delta Temp (°C)	0°C	5°C	2°C
Starts and Hours Tab					
Chiller Running Time	Status	Time (Sec to HH: MM)		
Compressor 1A Starts	Status	Starts			
Compressor 1A Running Time	Status	Time (Sec to HH: MM)		
Compressor 1B Starts	Status	Starts			
Compressor 1B Running Time	Status	Time (Sec to HH: MM)		
Compressor 1C Starts	Status	Starts			
Compressor 1C Running Time	Status	Time (Sec to HH:MM)		
Compressor 2A Starts	Status	Starts			
Compressor 2A Running Time	Status	Time (Sec to HH: MM)		
Compressor 2B Starts	Status	Starts			
Compressor 2B Running Time	Status	Time (Sec to HH: MM)		
Compressor 2C Starts	Status	Starts			
Compressor 2C Running Time	Status	Time (Sec to HH:MM)		
Evaporator Water Pump 1 Starts	Status	Starts			
Evaporator Water Pump 1 Running Time	Status	Time (Sec to HH: MM)		
Evaporator Water Pump 1 Starts	Status	Starts			
Evaporator Water Pump 1 Running Time	Status	Time (Sec to HH: MM)		
Heat Recovery Tab					
Partial heat recovery (PHR) Fan Control	Setting	Disable/Enable			
PHR Leaving Water Temperature Setpoint	Setting	Temp (°C)			
PHR Leaving Water Temperature Adjustment	Setting	Delta Temp (°C)			
Generic Monitoring Tab					
Generic Temp Sensor	Status	Temp (°C)			
Generic Pressure Sensor	Status	Pressure (kPa)			
Generic Analog Monitor	Status	Current (mA)			
Generic Low Volt Monitor	Setting	Open/Closed			
Generic High Volt Monitor	Setting	Off/On			

The items that can be modified show up in white. The items that cannot be modified show up in gray.

Figure 45. Fields in White

Unit	Circuit 1	Circuit 2	Unit	Manual Over	rides
System	Co	ntrol Point Nam	е	Value	Unit
Chiller	Evaporator B	Entering Water T	emperature		°F
Chiller	Evaporator l	_eaving Water T	emperature		۴F
Chiller	Evaporator \	Vater Flow Swite	h Status	No Flow	
Chiller	Outdoor Air	Temperature			°F
Chiller	Active Chille	d Water Setpoin	t	44.0	۴F
Chiller	Active Chille	d Water Setpoin	t Source	Front Panel	
Chiller	Front Panel	Chilled Water S	etpoint	44.0	۳F
Chiller	Filtered Chil	led Water Setpo	int	44.0	۳F
Chiller	Active Dema	and Limit Setpoi	nt	100	%
Chiller	Active Dema	and Limit Setpoi	nt Source	Front Panel	
Chiller	Front Panel	Demand Limit S	letpoint	100	%
Chiller	Manual Ove	rride Exists		False	

To change the setpoint enter a new value for the setpoint into the text field.

Figure 46. Change Setpoint

If the entered value is outside the given range, the background turns red.

Figure 47. Change Out of Range

Chiller	Active Demand Limit Setpoint Source	Front Panel	
Chiller	Front Panel Demand Limit Setpoint	250	%
Chiller	Manual Override Exists	False	

If the value entered is not valid, an error message will display and the change will not occur.

Figure 48. Setpoint Change Failed

		wanuar over	nues
System	Control Point Name	Value	Unit
Chiller	Evaporator Entering Water Temperature		۳F
Chiller	Evaporator Leaving Water Temperature		۳F
Chiller	Evaporator Water Flow Switch Status	No Flow	
Chiller	Outdoor Air Temperature		۳F
Chiller	Active Chilled Water Setpoint	42.0	۳F
Chiller	Action and the second second		
Chiller	Fr Message		۴F
Chiller	FI (Clos	<u>مر</u>
Chiller	A Setpoint Change Failed.	[003	%
Chiller	A	el	
Chiller	Fr UK		%
Chiller	Manuar overnue Exists	raise	
Chiller	Setpoint Source	BAS/Ext/FP	

Diagnostics View

This window lists the active and inactive (history) diagnostics. There can be up to 60 diagnostics, both active and historic. For example, if there were 5 active diagnostics, the possible number of historic diagnostics would be 55. You can also reset active diagnostics here, (i.e., transfer active diagnostics to history and allow the chiller to regenerate any active diagnostics).

Resetting the active diagnostics may cause the chiller to resume operation.

The Active and History diagnostics have separate tabs. A button to reset the active diagnostics displays when either tab is selected.

Figure 49 Diagnostic View

Trane Tracer CH53	0 Unit Control Service Tool	s					
e View Options T	rendview Language Units	Reports Help					
Connection View	Unit View	Diagnostics					
Diagnostics						_ 5	PX
ctive History							
Date/Time		Description		Target	Severity	Persistence	
	essive Loss of Communication			Chiller	Immediate Shutd.	Latching	*
	essive Loss of Communication	n		Chiller	Immediate Shutd		
il 10, 2009 2:06 MP:				Platform	Warning	Nonlatching	
	essive Loss of Communication			Chiller	Immediate Shutd.		-
110 2009 12:2 Exce	essive Loss of Communication	n		Chiller	Immediate Shutd	Latching	
elect a Diagnostic to	view troubleshooting informa	tion.					
elect a Diagnostic to	view troubleshooting informa	tion.					
elect a Diagnostic to	view troubleshooting informa		All Active Diagnosti	¢ş			
elect a Diagnostic to	view troubleshooting informa		All Active Diagnost	cs			

Configuration View

This view is under the CH530 tab and displays the active configuration and allows you to make changes to the unit configuration.

Figure 50. Configuration View - CH530 Tab

Unit Type CH530 Options Options Setup Generic Monitoring	
Unit Capacity	100 Nominal Tons
Unit Design Sequence	A0 💌
Manufacturing Location (DCTL)	Pueblo, CO USA
Unit Type (UNTY)	High Efficiency/Performance
Sound Package	Low Noise
Supply Power Frequency	60 Hz
Unit Application	Wide Ambient (0 to 125F/-18 to 52C)
Heat Recovery	Not installed
Evaporator Pump Control	No Pump Control (Pump Request Relay)

Configuration View allows you to define the chiller's components, ratings, and configuration settings. These are all values that determine the required installed devices, and how the chiller application is run in the main processor. For example, a user may set an option to be installed with Configuration View, which will require devices to be bound using Binding View. And when the main processor runs the chiller application, the appropriate steps are taken to monitor required inputs and control necessary outputs.

Any changes made in the Configuration View, on any of the tabs, will modify the chiller configuration when you click on the Load Configuration button (located at the base of the window). The Load Configuration button uploads the new configuration settings into the main processor.

Selecting the Undo All button will undo any configuration setting changes made during the present TechView connection and since the last time the Load Configuration button was selected.

ltem	Description
Basic Product Line	CGAM - Air-Cooled Scroll Packaged Chiller
	CXAM - Air-Cooled Scroll Heat Pump (TAI, EPL only)
Unit Capacity	020 Nominal Tons
	023 Nominal Tons (TAI, EPL only)
	026 Nominal Tons
	030 Nominal Tons
	035 Nominal Tons
	039 Nominal Tons (EPL only)
	040 Nominal Tons
	045 Nominal Tons (EPL only)
	046 Nominal Tons (TAI, EPL only)
	052 Nominal Tons
	060 Nominal Tons
	070 Nominal Tons
	080 Nominal Tons
	090 Nominal Tons
	100 Nominal Tons
	110 Nominal Tons
	120 Nominal Tons
Unit Design Sequence	Factory Assigned
Manufacturing Location	Epinal, France
	Pueblo, USA
	Taicang, China
	Curitiba, Brazil
Unit Type	Standard Efficiency/Performance (EPL only)
	High Efficiency/Performance
Sound Package	High Duty (EPL and TAI only)
	Standard Noise
	Low Noise
Supply Power Frequency	60 Hz
	50 Hz
Unit Application	Standard Ambient (EPL and TAI only)
	Low Ambient (EPL and TAI only)
	High Ambient (EPL and TAI only)
	Wide Ambient
Heat Recovery	No Heat Recovery
	Partial Heat Recovery w/ Fan Control
	Partial Heat Recovery w/o Fan Control (EPL and TAI only)
Evaporator Pump Control	No Pump Flow Control
Evaporator Pump Control	No Pump Flow Control Single Pump Fixed Speed (TAI, EPL only)
Evaporator Pump Control	No Pump Flow Control Single Pump Fixed Speed (TAI, EPL only) Single Pump Variable Speed (TAI, EPL only)
Evaporator Pump Control	No Pump Flow Control Single Pump Fixed Speed (TAI, EPL only)

Table 42. Configuration View Items - CH530 Tab

A couple of additional tabs in Configuration View allow you to change other unit configuration options using the Options tab and the Options Setup tab. The features that are installed on the Options Tab will control what is displayed on the Options Setup tab.

File View Options TrendView Language Units Reports Help		
Connection View Unit View Diagnostics	Configuration	
Configuration	_	8>
Unit Type CH530 Options Options Setup Openeric Monitoring		
Discharge Temperature Sensors	Not installed	ŕ
Evaporator Pump Fault Input	Installed	
Night Noise Setback	Not Installed	
Freeze Protection By Heater	Eidernal Thermostat Heater	
Ice Building	Not Installed	
Operating Status Programmable Relays	Not Installed	
Auxiliary Setpoint	Not installed	
External Chilled/Hot Water Setpoint	Not Installed	

Figure 51. Configuration View - Options Tab

Figure 52. Configuration View - Options Setup Tab

File View Options TrendView Language Units Reports Help		
Connection View Configuration		
Configuration		_ & X ^
Unit Type CH530 Options Options Setup Generic Monitoring		
Module 1 Programmable Status Relay 1 (J2-10,11,12)	Compressor Running	
Module 1 Programmable Status Relay 2 (J2-7,8,9)	Latching Alarm	
Module 1 Programmable Status Relay 3 (J2-4,5,6)	Chiller Limit Mode	
Module 1 Programmable Status Relay 4 (J2-1,2,3)	Warning	

Software View

Software view allows you to verify the version of chiller software currently running on the EasyView or DynaView and download a new version of chiller software to the EasyView or DynaView.

You can also add up to two available languages to load into the DynaView. Loading an alternate language file allows the DynaView to display its text in the selected alternate language, English will always be available.

Figure 53. Software View

V Trane Tracer CH530 Unit Control Service Tools	
File View Options TrendView Language Units Reports Help	
Connection View Unit View Software	
Software	_ @ X
Software Installed Product & Version CGAM Product CGAM Available Versions 01.00 Download Software to Main Processor	Select any 2 Languages Select any 2 Languages Chinese-China Corech Prench German ** ** Select any 2 Languages Chinese-China China Chinese-China Chinese-China
	Download DynaView Languages
4	

Binding View

Binding View allows you to assess the status of the network and all the devices connected as a whole, or the status of individual devices by using status icons and function buttons.

Binding View is essentially a table depicting what devices and options are actually discovered on the network bus (and their communication status) versus what is required to support the configuration defined by the feature codes and categories. Binding View allows you to add, remove, modify, verify, and reassign devices and options in order to match the configuration requirements.

Whenever a device is installed, it must be correctly configured to communicate and to function as intended. This process is called binding. Some features of Binding View are intended to serve a second purpose; that is diagnosing problems with communication among the devices.

	Unit Control Service To		
	ndView Language Unit		
Connection View	Unit View	Binding View	
Binding View			_ @ X
Reconnect Rebuild View	V Sequence Reassign	Bind Unbind All LEDs On	Ds Off Check Out All Clear Checkouts 🕜
	23	Build view with all devices conr	d powered before sequencing and binding.
Node		Device Name	Device Type Date Code
	nic Expansion Valve, Circu		Electronic Expansion Valve 0 -
	nic Expansion Valve, Circu		Electronic Expansion Valve 0
	ssor Fault Inputs 2A and 2		Dual High Voltage Binary Input 0
	ssor Fault Inputs 1A and 1		Dual High Voltage Binary Input 0
		d Phase Protection Inputs	Dual Binary Input 0
	Temperature Sensor, Cir		Temperature Sensor 0
	Temperature Sensor, Circ		Temperature Sensor 0
	ge Pressure Transducer,		Danfoss Pressure Sensor 0
	Pressure Transducer, Cit		Danfoss Pressure Sensor 0 Danfoss Pressure Sensor 0
	ge Pressure Transducer, Pressure Transducer, Cir		Dantoss Pressure Sensor 0 Danfoss Pressure Sensor 0
	Air Temperature Sensor		Temperature Sensor 0
	erter Fault Inputs, Circuits		Dual Binary Input 0
	erter Speed Commands, C		Dual Analog I/O 0
	ays, Circuit 2	reaks range	Quad Relay Output 0
	ays, Circuit 1		Quad Relay Output 0
	tor Pump Fault Inputs		Dual Binary Input 0 -
		Select a device to l	input/output elements.
	Buil	d view with all devices connect	owered before sequencing and binding.

Replacing or Adding Devices

If a device is communicating but incorrectly configured, it might not be necessary to replace it. If the problem with the device is related to communication, attempt to rebind it, and if the device becomes correctly configured, it will then communicate properly.

If a device that needs to be replaced is still communicating, it should be unbound. Otherwise, it will be necessary to rebuild the CH530 network image for Binding View to discover that it has been removed. An unbound device stops communicating and allows a new device to be bound in its place.

It is good practice to turn the power off while detaching and attaching devices to the CH530 network. Be sure to keep power on the service tool computer. After power is restored to the CH530 network, the reconnect function in Binding View restores communication with the network. If the service tool computer is turned off, you must restart TechView and Binding View.

If a device is not communicating, the binding function displays a window to request manual selection of the device to be bound. Previously-selected devices are deselected when the function starts. When manual selection is confirmed, exactly one device must be selected; if it is the correct type, it is bound. If the desired device cannot be selected or if multiple devices are accidentally selected, you can close the manual selection window by clicking on No and repeat the bind function.

Pre-Start Checkout

When installation is complete, but prior to putting the unit into service, the following prestart procedures must be reviewed and verified correct:

A WARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury

- Inspect all wiring connections to be sure they are clean and tight.
- Verify that all refrigerant valves are "OPEN"

A CAUTION Compressor Damage!

Do not operate the unit with the compressor, oil discharge, liquid line service valves and the manual shutoff on the refrigerant supply to the auxiliary coolers "CLOSED". Failure to "OPEN" all valves may cause serious compressor damage.

- Check the power supply voltage to the unit at the main power fused-disconnect switch. Voltage must be within the voltage utilization range stamped on the unit nameplate. Voltage imbalance must not exceed 2 percent. Refer to Paragraph.
- Check the unit power phasing to be sure that it has been installed in an "ABC" sequence.

Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

• Fill the evaporator chilled water circuit. Vent the system while it is being filled. Open the vents on the top of the evaporator during filling and close when filling is completed.

A CAUTION Proper Water Treatment!

The use of untreated or improperly treated water in the CGAM may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

• Close the fused-disconnect switch(es) that supplies power to the chilled water pump starter.

AWARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

- Start the chilled water pump to begin circulation of the water. Inspect all piping for leakage and make any necessary repairs.
- With water circulating through the system, adjust water flow and check water pressure drop through the evaporator.
- Prove all Interlock and Interconnecting Wiring Interlock and External.
- Check and set, as required, all CH530 Menu Items.
- Stop the chilled water pump.

Unit Voltage Power Supply

A WARNING Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

Voltage to the unit must meet the criteria given in. Measure each leg of the supply voltage at the unit's main power fused-disconnect. If the measured voltage on any leg is not within specified range, notify the supplier of the power and correct the situation before operating the unit.

▲ CAUTION Equipment Damage!

Inadequate voltage to the unit may cause control components to malfunction and shorten the life of relay contact, compressor motors and contactors.

Unit Voltage Imbalance

Excessive voltage imbalance between the phases of a three-phase system can cause motors to overheat and eventually fail. The maximum allowable imbalance is 2 percent. Voltage imbalance is determined using the following calculations:

% Imbalance =
$$\frac{(l_x - l_{ave})x \ 100}{l_{ave}}$$

$$V_{ave} = \frac{(V_1 + V_2 + V_3)}{3}$$

 V_x = phase with greatest difference from V_{ave} (without regard to sign)

For example, if the three measured voltages are 221, 230, and 227 volts, the average would be:

$$\frac{221 + 230 + 227}{3} = 226$$

The percentage of imbalance is then:

$$\frac{100(221-226)}{226} = 2.2\%$$

This exceeds the maximum allowable (2%) by 0.2 percent.

Unit Voltage Phasing

It is important that proper rotation of the compressors be established before the unit is started. Proper motor rotation requires confirmation of the electrical phase sequence of the power supply. The motor is internally connected for clockwise rotation with the incoming power supply phased A, B, C.

Basically, voltages generated in each phase of a polyphase alternator or circuit are called phase voltages. In a three-phase circuit, three sine wave voltages are generated, differing in phase by 120 electrical degrees. The order in which the three voltages of a three-phase system succeed one another is called phase sequence or phase rotation. This is determined by the direction of rotation of the alternator. When rotation is clockwise, phase sequence is usually called "ABC", when counterclockwise, "CBA".

This direction may be reversed outside the alternator by interchanging any two of the line wires. It is this possible interchange of wiring that makes a phase sequence indicator necessary if the operator is to quickly determine the phase rotation of the motor.

Proper compressor motor electrical phasing can be quickly determined and corrected before starting the unit. Use a quality instrument, such as the Associated Research Model 45 Phase Sequence Indicator.

- 1. Press the Stop key on the Clear Language Display.
- 2. Open the electrical disconnect or circuit protection switch that provides line power to the line power terminal block(s) in the starter panel (or to the unitmounted disconnect).

3. Connect the phase sequence indicator leads to the line power terminal block, as follows:

<u>Phase Sea. Lead</u>	<u>Terminal</u>
Black (Phase A)	.L1
Red (Phase B)	.L2
Yellow (Phase C)	.L3

- 4. Turn power on by closing the unit supply power fused-disconnect switch.
- 5. Read the phase sequence on the indicator. The "ABC" LED on the face of the phase indicator will glow if phase is "ABC".
- 6. If the "CBA" indicator glows instead, open the unit main power disconnect and switch two line leads on the line power terminal block(s) (or the unit mounted disconnect). Reclose the main power disconnect and recheck the phasing.

A CAUTION Equipment Damage!

Do not interchange any load leads that are from the unit contactors or the motor terminals.

7. Reopen the unit disconnect and disconnect the phase indicator.

A WARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

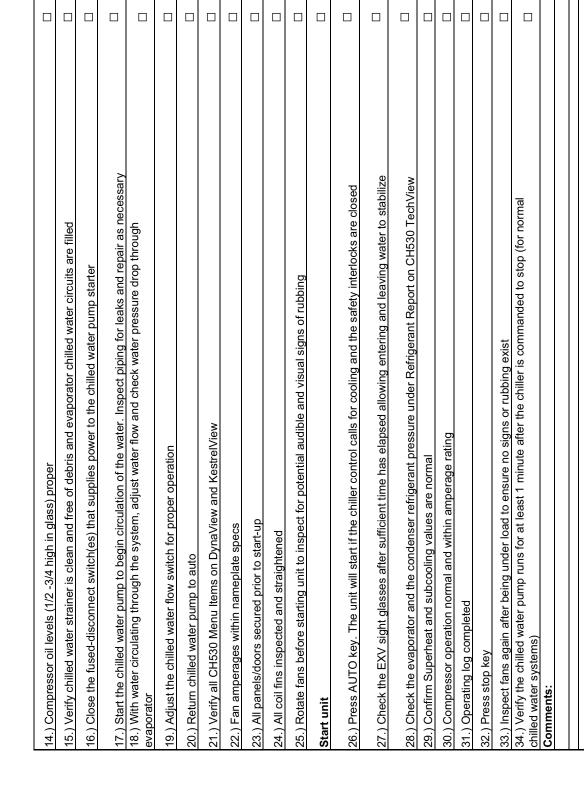
Water System

Flow Rates

Establish a balanced chilled water flow through the evaporator. The flow rates should fall between the minimum and maximum values. Chilled water flow rates below the minimum values will result in laminar flow, which reduces heat transfer and causes either loss of EXV control or repeated nuisance, low temperature cutouts. Flow rates that are too high can cause tube erosion.

Pressure Drop

Measure water pressure drop through the evaporator at the field-installed pressure taps on the system water piping. Use the same gauge for each measurement. Measure flow at the field-installed supply and return. This will include valves, strainers, and fittings in the pressure drop readings.


Pressure drop readings should be approximately those shown in the Pressure Drop Charts in the Installation-Mechanical section.

Start Up Checklist

Figure 55. Start Up Checklist

CGAM Mandatory Start Up Checklist	
***This checklist is not intended to be a substitution for the contractors installation instruction. This checklist is intended to be a guide for the Trane technician just prior to unit 'start-up'. Many of the recommended checks and actions could expose the technician to electrical and mechanical hazards. Refer to the appropriate sections in the unit manual for appropriate procedures, component specifications and safety instructions.	
Job Name	Serial #
Job Location	Model #
Sales Order #	Ship Date
Unit DL # (special units)	Date
Starting Sales Office	Technician
Except where noted; it is implied that the technician is to use this checklist for inspection / verification of prior task completed by the general contractor at installation. Use the line item content to also record the associated values onto	
the Trane unitary packaged equipment log.	Complete
1.) Unit clearances adequate for service and to avoid air recirculation etc.	
2.) Unit exterior inspected	
3.) Crankcase heaters working for 24 hours prior to arrival of Trane technician performing start up	
4.) Correct voltage supplied to unit and electric heaters (imbalance not to exceed 2%)	
5.) Unit power phasing (A-B-C sequence) proper for compressor rotation	
6.) Copper power wiring meets sizing requirement in job submittal	
7.) Unit properly grounded	
8.) All automation and remote controls installed/wired	
9.) All wiring connections tight	
10.) Prove chilled water side Interlock and Interconnecting Wiring Interlock and externals (chilled water pump)	
11.) Field installed control wiring landed on correct terminals (external start/stop, emergency stop, chilled water reset)	
12.) Shipping hardware for compressors removed	
13.) Verify all refrigerant and oil valves are open/back seated	

***For content inquires contact Trane Tech Services

TRANE

Unit Start-Up Procedures

Sequence of Operation

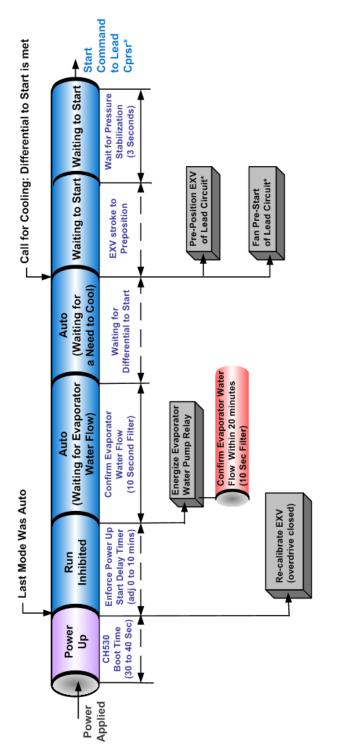
Power Up

CGAM Sequence of Operation:

The Power up chart shows the respective DynaView screens during a power up of the main processor. This process takes from 30 to 45 seconds depending on the number of installed Options. On all power ups, the software model will always transition through the 'Stopped' Software state independent of the last mode. If the last mode before power down was 'Auto', the transition from 'Stopped' to 'Starting' occurs, but it is not apparent to the user.

Figure 56. Power Up

Power Up to Starting


The Power up to starting diagram shows the timing from a power up event to energizing the compressor. The shortest allowable time would be under the following conditions:

- 1. No motor restart inhibit
- 2. Evaporator Water flowing
- 3. Power up Start Delay setpoint set to 0 minutes
- 4. Adjustable Stop to Start Timer set to 5 seconds
- 5. Need to cool

The above conditions would allow for a minimum power up to starting compressor time of 95 seconds.

Figure 57. Power Up to Starting

* Lead Circuit/Compressor is determined by:

- Circuit Staging Option: Balanced Wear, Circuit 1 Lead, Circuit 2 Lead
 - Compressor Staging Option: Balanced Wear, Fixed Sequence (Follows per circuit configuration)

- also influenced by lockouts, restart inhibit and diagnostics present

TRANE

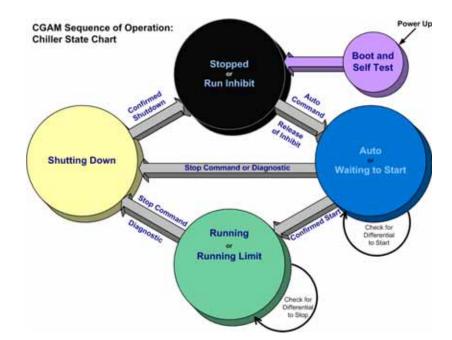
Stopped to Starting:

The stopped to starting diagram shows the timing from a stopped mode to energizing the compressor. The shortest allowable time would be under the following conditions:

- 1. No motor restart inhibit
- 2. Evaporator Water flowing
- 3. Power up Start Delay Timer has expired
- 4. Adjustable Stop to Start Timer has expired
- 5. Need to cool

The above conditions would allow the compressor to start in 60 seconds.

CAUTION Refrigerant!


If both suction and discharge pressures are low but sub-cooling is normal, a problem other than refrigerant shortage exists. Do not add refrigerant, as this may result in overcharging the circuit.

Use only refrigerants specified on the unit nameplate (R-410A) and Trane OIL00079 (1 quart) or OIL00080 (1 gallon). Failure to do so may cause compressor damage and improper unit operation.

CAUTION Equipment Damage!

Ensure that the oil sump heaters have been operating for a minimum of 24 hours before starting. Failure to do so may result in equipment damage.

Figure 58. Chiller State Chart

Start-Up

A CAUTION Equipment Damage!

Ensure that the oil sump heaters have been operating for a minimum of 24 hours before starting. Failure to do so may result in equipment damage.

If the pre-start checkout, has been completed, the unit is ready to start.

- 1. Press the STOP key on the CH530.
- 2. As necessary, adjust the setpoint values in the CH530 menus using TechView.
- 3. Close the fused-disconnect switch for the chilled water pump. Energize the pump(s) to start water circulation.
- Check the service valves on the discharge line, suction line, oil line and liquid line for each circuit. These valves must be open (backseated) before starting the compressors.

▲ CAUTION Compressor Damage!

Catastrophic damage to the compressor will occur if the oil line shut off valve or the isolation valves are left closed on unit start-up.

- 5. Press the AUTO key. If the chiller control calls for cooling and all safety interlocks are closed, the unit will start. The compressor(s) will load and unload in response to the leaving chilled water temperature.
- 6. Verify that the chilled water pump runs for at least one minute after the chiller is commanded to stop (for normal chilled water systems).

Note: Once the system has been operating for approximately 30 minutes and has become stabilized, complete the remaining start-up procedures, as follows:

- 7. Check the evaporator refrigerant pressure and the condenser refrigerant pressure under Refrigerant Report on the CH530 TechView. The pressures are referenced to sea level (14.6960 psia).
- 8. Check the EXV sight glasses after sufficient time has elapsed to stabilize the chiller. The refrigerant flow past the sight glasses should be clear. Bubbles in the refrigerant indicate either low refrigerant charge or excessive pressure drop in the liquid line or a stuck open expansion valve. A restriction in the line can sometimes be identified by a noticeable temperature differential between the two sides of the restriction. Frost will often form on the line at this point. Proper refrigerant charges are shown in the General Data tables.
- Note: Important! A clear sight glass alone does not mean that the system is properly charged. Also check system subcooling, liquid level control and unit operating pressures.
- 9. Measure the system subcooling.
- 10. A shortage of refrigerant is indicated if operating pressures are low and subcooling is also low. If the operating pressures, sight glass, superheat and subcooling readings indicate a refrigerant shortage, gas-charge refrigerant into each circuit, as required. With the unit running, add refrigerant vapor by connecting the charging line to the suction service valve and charging through the backseat port until operating conditions become normal.

Print out a Chiller Service Report from TechView to file a start-up claim and to keep for reference with the chiller.

Seasonal Unit Start-Up Procedure

- 1. Close all valves and re-install the drain plugs in the evaporator and condenser heads.
- 2. Service the auxiliary equipment according to the start-up/maintenance instructions provided by the respective equipment manufacturers.
- 3. Vent and fill the cooling tower, if used, as well as the condenser and piping. At this point, all air must be removed from the system (including each pass). Close the vents in the evaporator chilled water circuits.
- 4. Open all the valves in the evaporator chilled water circuits.
- 5. If the evaporator was previously drained, vent and fill the evaporator and chilled water circuit. When all air is removed from the system (including each pass), install the vent plugs in the evaporator water boxes.

▲ CAUTION Equipment Damage!

Ensure that the oil sump heaters have been operating for a minimum of 24 hours before starting. Failure to do so may result in equipment damage.

▲ CAUTION Compressor Damage!

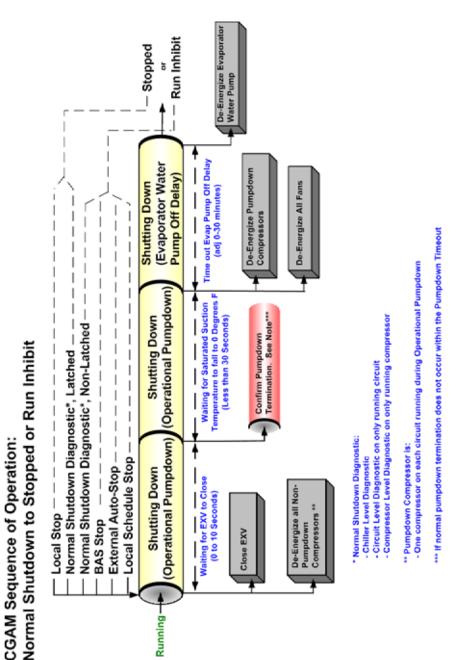
Catastrophic damage to the compressor will occur if the oil line shut off valve or the isolation valves are left closed on unit start-up.

Limit Conditions

CH530 will automatically limit certain operating parameters during startup and run modes to maintain optimum chiller performance and prevent nuisance diagnostic trips. These limit conditions are noted in Figure 43, p. 129.

Running - Limited	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.			
Capacity Limited by High Cond Press	The circuit is experiencing condenser pressures at or near the condenser limit setting. The compressor will be unloaded to prevent exceeding the limits.			
Capacity Limited by Low Evap Rfgt Temp	The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. The compressors will be unloaded to prevent tripping.			

Table 43. Limit Conditions



Unit Shutdown

Normal Shutdown to Stopped

The Normal Shutdown diagram shows the Transition from Running through a Normal (friendly) Shutdown. The Dashed lines on the top attempt to show the final mode if you enter the stop via various inputs.

Figure 59. Normal Shutdown

Seasonal Unit Shutdown

1. Perform the normal unit stop sequence using the <Stop> key.

Note: Do not open the starter disconnect switch. This must remain closed to provide control power from the control power transformer to the oil heaters.

- 2. Verify that the chilled water and condenser water pumps are cycled off. If desired, open the disconnect switches to the pumps.
- 3. Drain the condenser piping and cooling tower, if desired.
- 4. Remove the drain and vent plugs from the condenser headers to drain the condenser.
- 5. Verify that the oil heaters are working.
- 6. Once the unit is secured, perform the maintenance identified in the following sections.

Maintenance

Periodic Maintenance

General

Perform all maintenance procedures and inspection at the recommended intervals. This will prolong the life of the chiller and minimize the possibility of malfunctions.

Use an "Operator's Log" to record the unit's operating history. The log serves as a valuable diagnostic tool for service personnel. By observing trends in operating conditions, an operator can anticipate and prevent problem situations before they occur.

If the unit is not operating properly during maintenance inspections, consult the "Diagnostic and Troubleshooting" section of this manual.

Weekly Maintenance

After the chiller has been operating for approximately 30 minutes and the system has stabilized, check the operating pressures and temperatures and complete the following checks:

Check the evaporator and condenser refrigerant pressures in the Refrigerant Report menu of the CH530 display. Pressures are referenced at sea level (14.6960 psia).

Check the electronic expansion valve sight glasses. (Note: The electronic expansion valve is commanded closed at unit shutdown and if the unit is off, there will be no refrigerant flow through the sight glasses. Only when a circuit is running will refrigerant flow be present.) The refrigerant flow through the sight glasses should be clear. Bubbles in the refrigerant indicate either low refrigerant charge or excessive pressure drop in the liquid line. A restriction in the line can sometimes be identified by a noticeable temperature differential between the two sides of the restriction. Frost may often form on the liquid line at this point. Correct refrigerant charges are shown in the General Data Tables.

NOTICE: A clear sight glass alone does not mean that the system is properly charged. Also check the system superheat, subcooling and unit operating pressures.

NOTICE: Use only manifold gauge sets designed for use with R-410A refrigerant. Use only recovery units and cylinders designed for the higher pressure of R-410A refrigerant and POE oil.

NOTICE: R-410A must be charged in a liquid state.

Check the system superheat, subcooling, evaporator temperature drop (Delta-T), evaporator water flow, evaporator approach temperature, compressor discharge superheat, and compressor RLA.

Normal operating conditions at ARI Conditions are:

- Evaporator pressure: 120 psig
- Evaporator Approach: 5-10 F
- Evaporator Superheat: 12 F
- Electronic Expansion Valve: 40-50 percent open
- Evaporator Temperature Drop (Delta-T): 10 F
- Compressor Discharge Temperature: 63 F or more
- Condensing Pressure: 420-440 psig
- Condensing Approach Temperature: 25 F
- System Subcooling: 15-20 F
- Compressor RLA: 100 percent

If operating pressures and sight glass conditions seem to indicate a refrigerant shortage, measure the system superheat and subcooling. Refer to "System Superheat" and "System Subcooling."

If operating conditions indicate a refrigerant overcharge, remove refrigerant at the liquid line service valve. Allow refrigerant to escape slowly to minimize oil loss. Use a refrigerant recovery cylinder and do not discharge refrigerant into the atmosphere.

\triangle WARNING: Do not allow refrigerant to directly contact skin as injury from frostbite may result.

Inspect the entire system for unusual conditions and inspect the condenser coils for dirt and debris. If the coils are dirty, refer to "Coil Cleaning" in this manual.

Monthly Maintenance

Complete all weekly maintenance procedures.

Measure and record the evaporator superheat. Refer to "Evaporator Superheat."

Measure and record the system subcooling. Refer to "System Subcooling."

Manually rotate the condenser fans to ensure that there is proper clearance on the fan shroud openings.

A WARNING: Position all electrical disconnects in the "OPEN" position and lock them to prevent injury of death due to electrical shock or moving parts.

Annual Maintenance

Complete all weekly and monthly maintenance checks.

Check the oil level and refrigerant charge. Routine changing of oil is not required.

Have a qualified laboratory perform a compressor oil analysis to determine system moisture content and acid level. This analysis is a valuable diagnostic tool.

Contact a qualified service provider to leak test the chiller, check operating and safety controls, and to inspect electrical components for proper operation. Leak testing my be accomplished using soap solution or with electronic or ultrasonic leak detectors.

Inspect all piping components for leaks and damage. Clean all water strainers.

NOTICE: If the CGAM chiller evaporator or evaporator water piping is drained of water, the evaporator immersion heater must be deenergized. Failure to de-energize the heater will cause it to burn out.

Clean and repaint any components that show corrosion.

Clean the condenser coils. Refer to "Coil Cleaning" in this manual.

A WARNING: Position all electrical disconnects in the "OPEN" position and lock them to prevent injury of death due to electrical shock or moving parts.

Clean the condenser fans. Check the fan assemblies for proper clearance in the fan shroud openings and for motor shaft misalignment or abnormal end-play, vibration and noise.

Compressor Service Information

Compressor Electrical Connections

It is very important that CSHD compressors used in Trane Model CGAM chillers are wired correctly for proper rotation. These compressors will not tolerate reverse rotation. Verify correct rotation/phasing using a rotation meter. Proper phasing is clockwise, A-B-C. If wired incorrectly a CSHD compressor will make excessive noise, will not pump and will draw about half the normal current. It will also become very hot if allowed to run for an extended period.

NOTICE: Do not "bump" the compressor to check rotation as incorrect rotation could cause compressor motor failure in as little as 4 to 5 seconds!

It is also very important that CSHN compressors used in Trane Model CGAM chillers are wired correctly for proper rotation. Correct rotation of CSHN compressors is also clockwise, with A-B-C phasing. Improper rotation of the CSHN compressors is indicated by a compressor module trip, noisy operation, no pressure difference on manifold gauges and low amp draw.

Oil Level

Oil should also be visible in the sight glass when the compressor is running. When operating, each compressor in a tandem or trio set may have a different oil level.

To check compressor oil level, refer to the label near the compressor sight glass. The compressor(s) must be off. Wait three minutes. With tandem or triple compressors the oil level will equalize after shutdown. Compressor oil level should be clearly visible within the sight glass when the compressors are off.

Oil Fill, Removal and Capacity

The Model CSHN compressors have an oil charging valve with a dip tube that goes to the bottom of the compressor. This can be used to add or remove oil from the compressor.

Model CSHD compressors have a Schrader valve in the middle of the compressor which is used to add oil. To remove oil from these compressors, the system refrigerant charge must be removed and then the oil can be removed using a suction style hand pump and tube in the oil equalizer tube fitting. Oil can also be added to these compressors through the oil equalizer tube fitting. Care must be taken to prevent moisture from entering the system when adding oil.

Compressor Oil Capacity

CSHD 125, 161 — 7 Pints CSHN 184 — 14.2 Pints CSHN 250 — 15.2 Pints CSHN 315 — 16.2 Pints CSHN 374 — 17.2 Pints Use only Trane OIL00079

Use only Trane OIL00079 (1 quart) or OIL00080 (1 gallon). These are the same oil, but different container sizes. Do not use any other POE oil.

NOTICE: Never reuse oil.

Oil Testing

Use Trane Oil Testing Kit KIT06815 only for testing lubricating oil in the Model CGAM chiller. Note that the POE oil used in this product is very hygroscopic and easily absorbs and retains moisture. The acceptable moisture content is less than 100 ppm and acceptable acid level is less than 0.5 TAN. Note that refrigerant and moisture is very

difficult to remove from this oil using vacuum. Also note that once the seal on a container of POE oil is opened, the oil must be used.

In the event of a compressor failure, always test the oil with an acid test kit to determine whether the compressor failure was mechanical or electrical. This is important because it dictates correct cleanup procedure.

Compressor Operational Pump Down

The operational pump down is used to manage the refrigerant charge and prevent liquid slugging into the compressors, oil dilution and oil starvation. The pump down will be completed by the last operating compressor in the refrigerant circuit and occurs during normal shutdown conditions. The electronic expansion valve will close.

The operational pump down sequence will end when:

- Saturated evaporator temperature drops below the operational pump down set point
- Compressor pressure differential exceeds 348 psid (Condensing Pressure (Evaporator Pressure x 2.9)
- When the operational pump down time expires (60 x (100/circuit capacity %))
- An immediate shutdown diagnostic occurs
- A pressure transducer fails

Compressor Service Pump Down Procedure

The Service Pump down procedure is used to store the Model CGAM refrigerant in the condenser. The condenser is sized to hold the entire refrigerant charge.

Procedure:

- Select compressor to use for pump down.
- All chiller safeties remain in effect.
- Evaporator water flow must be proven
- Condenser fans operate normally
- Manually close refrigerant liquid line service valve

Service pump down is complete when:

- Service pump down time expires (60 x (100/circuit capacity %))
- Saturated evaporator pressure falls below Low Pressure Cutout x1.15 for one second

After pump down terminates, the MP automatically puts circuit into lockout. Pump down can also be terminated by "Abort Pump down" in service tool, an immediate shutdown diagnostic occurs or a pressure transducer fails.

Oil Equalizer Line

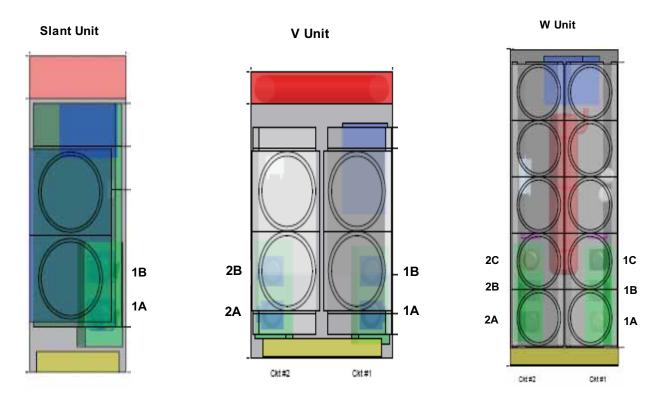
CSHN Compressors.

The oil equalizer line is equipped with a Rotolock fitting for easy removal. Torque values for tightening these fitting is 100 ft.-lbs, plus or minus 10 ft. lbs.

Drain the oil to a level below the oil equalizer tube fitting before removing the oil equalizer line. This must be done on both compressors. Use the oil drain valve on the compressor. If the oil is drained below the level of the oil level sight glass, it will be below the oil equalizer line level. Pressurize the low side of the compressor using nitrogen to help drain the oil. No more than 10 psig of pressure will be needed.

CSHD Compressors.

CSHD compressors do not have an oil drain valve. Therefore, before removing the oil equalizer line, the system refrigerant charge must be recovered before draining the oil. Use a catch pan to catch the oil when the compressor oil equalizer line is loosened to ensure that oil does not spill out of the compressor when the equalizer line is removed. The torque value for the Rotolock fitting on CSHD compressors is 64 ft.-lbs., plus or minus 2 ft.-lbs.


Tandem Compressor Suction Restrictors

Since most tandem compressor sets use unequal size compressors, these combinations require the use of a restrictor in the suction line of one or more compressors in order to provide correct oil level balance between compressors when they are operating. See the table below for correct restrictor applications. A figure showing where compressors are installed in the different units is also shown.

Unit Nominal	Compressor Size					
Size (tons)	1A	1B	2A	2B	Restrictor Size mm	Location
020	10	10			N/A	
023	10	13			25/23	1A
026	13	13			N/A	
030	15	15	N	/A	N/A	
035	15	20	IN	/A	31	1A
039	20	20			N/A	
045	20	25			31	1A
050	25	25			N/A	
040	10	10	10	10	N/A	
046	10	13	13	10	25/23	1A & 2B
052	13	13	13	13	N/A	
060	15	15	15	15	N/A	
070	15	20	20	15	31	1A & 2B
080	20	20	20	20	N/A	
090	20	25	25	20	31	1A & 2B
100	25	25	25	25	N/A	
110	25	30	30	25	31	1A & 2B
120	30	30	30	30	N/A	

Table 44. Compressor Manifold Order

Table 45. Compressor Locations

Compressor Replacement

If the CGAM chiller suffers a failed compressor, use these steps for replacement:

Each compressor has lifting eyes. Both lifting eyes must be used to lift the failed compressor. DO NOT LIFT A COMPRESSOR USING A SINGLE LIFTING EYE. Use proper lifting techniques, a spreader bar and rigging as for lifting both compressors simultaneously.

Compressor weights by compressor model are:

- CSHD 125 142 lbs.
- CSHD 161 155 lbs.
- CSHN 184 234 lbs.
- CSHN 250 238 lbs.
- CSHN 315 337 lbs.
- CSHN 374 362 lbs.

After a mechanical failure of a compressor, it is necessary to change the oil in the remaining compressor and also replace the liquid line filter drier. After an electrical failure of a compressor, it will also be necessary to change the oil in the remaining compressor, replace the liquid line filter drier and add a suction filter drier with clean-up cores.

- Note: Do not alter the refrigerant piping in any way as this can affect compressor lubrication.
- Note: Do not add a filter drier within 10 inches of the elbow for CSHD compressors, or within 16 inches of the elbow for CSHN compressors.

Refrigerant System Open Time

Model CGAM chillers use POE oil and therefore refrigerant system open time must be kept to a minimum. The following procedure is recommended:

Leave a new compressor sealed until it is ready to be installed in the unit. Maximum system open time is dependent upon ambient conditions, but do not exceed one hour open time.

Plug the open refrigerant line to minimize moisture absorption.

Always change the liquid line filter drier.

Evacuate the system to 500 microns or below.

Do not leave POE oil containers open to the atmosphere. Always keep them sealed.

Mechanical Compressor Failure

Replace the failed compressor(s) and change the oil in the remaining compressor(s) along with the refrigerant system liquid line filter drier.

Electrical Compressor Failure

Replace the failed compressor and change the oil in the other compressor(s). Also add a suction filter with cleanup cores and change the liquid line filter drier. Change filters and oil until the oil no longer test acidic. See "Oil Testing."

Compressor Motor Megging

Motor megging determines the electrical integrity of the compressor motor winding insulation. Use a 500 volt megger. A less than 1 meg-ohm reading is acceptable and 1000 ohms per nameplate volts is required to safely start the compressor.

Compressor Current Imbalance

Normal current imbalance could be 4 to 15 percent with balanced voltage due to motor design. Each phase should register 0.3 to 1.0 ohms and each phase should be within 7 percent of the other two phases. Phase to ground resistance must be infinity.

NOTICE: Maximum allowable voltage imbalance is 2 percent.

Refrigerant Piping

The compressor suction and discharge lines are copper. In most instances, piping may be reused. If piping is not reusable, order the correct service parts. Cut all tubing with a tubing cutter to prevent copper filings from entering the system. Cut the tubing in a straight length of pipe after the compressor connection has been unsweated. The line can then be reinstalled using a slip coupling and brazing.

NOTICE: The compressor suction line configuration must not be changed in any way. Changing compressor suction line configuration will compromise proper oil return to the compressor(s).

Compressor Electrical Terminal Box

Be sure to protect the terminal box when unbrazing or brazing compressor refrigerant piping connections

Compressor Crankcase Heaters

Compressor crankcase heaters must be energized at least eight hours before starting the CGAM chiller. This is required to boil refrigerant out of the oil before startup. Ambient temperature is not a factor and the crankcase heaters must always be energized prior to startup.

Condenser Maintenance

Condenser Coil Cleaning

Clean the condenser coils at least once a year or more frequently if the unit is in a "dirty" environment. A clean condenser coil will help to maintain chiller operating efficiency. Follow the detergent manufacturer's instructions to avoid damaging the condenser coils.

To clean the condenser coils use a soft brush and a sprayer such as a garden pump type or a high-pressure type. A high quality detergent such as Trane Coil Cleaner (Part No. CHM-0002) is recommended.

Note: If detergent mixture is strongly alkaline (pH value greater than 8.5, an inhibitor must be added).

Evaporator Maintenance

NOTICE:

The factory-installed immersion heater must be de-energized if the BPHE evaporator is drained of water for any reason. Failure to deenergize the immersion heater will cause it to burn out.

The Trane Model CGAM liquid chiller uses a brazed plate heat exchanger (BPHE) evaporator with factory-installed electronic flow switch (IFM efector) that is positioned in the evaporator water pipe. The evaporator inlet also includes a factory-installed immersion heater for freeze protection and a water strainer that must be kept in place to keep debris out of the evaporator.

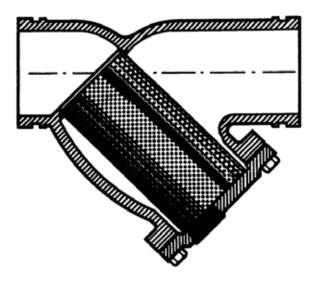
Note: Strainer maintenance is critical to proper operation and reliability. Any particles larger than 1mm entering the BPHE evaporator may cause the evaporator to fail, requiring replacement.

Acceptable BPHE evaporator water flow rate is 1.5 to 3.6 GPM per nominal unit ton capacity. To maintain 54-44 F in/out chilled water temperatures, the nominal water flow rate is 2.4 GPM per ton.

Minimum water flow rate must be maintained to avoid laminar flow, potential evaporator freezing, scaling and poor temperature control. The microprocessor and capacity control algorithms are designed to take a 10 percent change in water flow rate per minute while maintaining a $\pm 2^{\circ}$ F (1.1°C) leaving water temperature control accuracy. The chiller tolerates up to 30 percent per minute water flow variation as long as the flow is equal to or greater than minimum flow requirements.

Maximum water flow is 18 feet per second. Flow rates greater than this will cause excessive erosion.

The BPHE evaporator is difficult to clean should it become plugged with debris. Indications of a plugged BPHE evaporator include "wet" suction due to lack of heat exchange, loss of superheat control, depressed discharge superheat (superheat less than 63°F), compressor oil dilution and/or starvation and premature compressor failure.


Evaporator Replacement

If the CGAM evaporator requires replacement, it is very important that the new evaporator be replaced correctly and with the correct refrigerant and water piping connections. The refrigerant inlet/liquid connection is at the bottom of the evaporator and the refrigerant outlet/suction connection is at the top of the evaporator and both are on the same side. Pay particular attention to evaporators with dual circuits. Avoid cross-circuiting when installing the new evaporator.

Factory-installed water strainer is a Y-type design. The stainer is equipped with a blowdown valve. The strainer is a 16 mesh (approximately 1 mm) material.

Figure 60. Water Strainer - Y type

For maximum efficiency, a differential pressure gauge installed across the inlet and outlet will indicate pressure loss due to clogging and may be used as a guide to determine when cleaning is required. The taps for the pressure gauges are included as standard from the factory.

Normally when differential pressure reaches 5-10psi, the screen must be cleaned. The strainer is equipped with a blow-down valve on the cover plate. To clean open and flush out until any sediment is removed.

Diagnostics

Explanatory Comments

Diagnostic Text:

Black text is intended for use on TechView. It has no intrinsic length limit. It should contain few or no abbreviations.

Blue (*italicized*) *text* is intended for use on DynaView. It has a 40 character length limit for English and other European languages, based on 8 pixel character width (DynaView's display is 320 pixels wide). The text should be abbreviated as necessary to meet the length limit. Trane standard abbreviations or ASME standard abbreviations (ASME Y14.38-1999 or later) should be used wherever possible.

Orange (underlined) text is intended for use on LCI-C. LCI-C has a 28 character length limit for English and other European languages, based on one character per byte (LCI-C diagnostic text has a 28 byte limit). It should be abbreviated as necessary to meet the length limit. Trane standard abbreviations or ASME standard abbreviations (ASME Y14.38-1999 or later) should be used wherever possible. "Comm:" is the standard abbreviation for "Comm Loss:" in order to leave enough space for the rest of the diagnostic text.

Legacy Hex Code: Three digit hexadecimal code used on all past products to uniquely identify diagnostics.

Diagnostic Name and Source: Name of Diagnostic and its source. Note that this is the exact text used in the User Interface and/or Service Tool displays.

The following codes were added to cover the unmapped diagnostics:

6B6	Unknown Chiller Diagnostic
6B7	Unknown Compressor Diagnostic

Affects Target: Defines the "target" or what is affected by the diagnostic. Usually either the entire **Chiller**, or a particular **component** is affected by the diagnostic (the same one as the source), but in special cases functions are modified or disabled by the diagnostic. **None** implies that there is no direct affect to the chiller, sub components or functional operation.

Severity: Defines the severity of the above effect. **Immediate** means immediate shutdown of the effected portion, **Normal** means normal or friendly shutdown of the effected portion, **Special Mode** means a special mode of operation (limp along) is invoked, but without shutdown, and **Warning** means an Informational Note or Warning is generated.

Persistence: Defines whether or not the diagnostic and its effects are to be manually reset (Latched), or can be either manually or automatically reset (Nonlatched).

Active Modes [Inactive Modes]: States the modes or periods of operation that the diagnostic is active in and, as necessary, those modes or periods that it is specifically not active in as an exception to the active modes. The inactive modes are enclosed in brackets, []. Note that the modes used in this column are internal and not generally annunciated to any of the formal mode displays

Criteria: Quantitatively defines the criteria used in generating the diagnostic and, if nonlatching, the criteria for auto reset. If more explanation is necessary a hot link to the Functional Specification is used.

Reset Level: Defines the lowest level of manual diagnostic reset command which can clear the diagnostic. The manual diagnostic reset levels in order of priority are: **Local** and **Remote**. A diagnostic that has a reset level of Local, can only be reset by a local diagnostic reset command, but not by the lower priority remote Reset command whereas a diagnostic listed as Remote reset can be reset by either.

Help Text: Provides for a brief description of what kind of problems might cause this diagnostic to occur. Both control system component related problems as well as chiller application related problems are addressed (as can possibly be anticipated). These help messages will be updated with accumulated field experience with the chillers.

Main Processor Diagnostics

			Danslat	Active Modes		Desist
Diagnostic Name	Affects	Severity	Persiste nce	[Inactive Modes]	Criteria	Reset Level
MP: Reset Has Occurred	Chiller	Warning	NonLatch	All	The main processor has	NA
MP: Reset Has Occurred					successfully come out of a reset	
MP: Reset Has Occurred					and built its application. A reset	
					may have been due to a power up,	
					installing new software or	
					configuration. This diagnostic is	
					immediately and automatically	
					cleared and thus can only be seen	
	Platform	Warning	Latch	All	in the historic diagnostic list. MP has determined there was an	
MP: Non-Volatile Block Test Error	FIALIOITTI	warning	Laten	All	error with a block in the Non-	
MP: Non-Volatile Block Test Error MP: NV Block Test Error						
INP: INV BIOCK Test Error					Volatile memory. Check settings.	
MP: Non-Volatile Memory Reformatted	Platform	Warning	Latch	All	MP has determined there was an	Remote
MP: Non-Volatile Memory Reformatted		0			error in a sector of the Non-	
MP: NV Memory Reformatted					Volatile memory and it was	
MP: Could not Store Starts and Hours	Platform	Warning	Latch	All	reformatted. Check settings. MP has determined there was an	Remote
MP: Could not Store Starts and Hours					error with the previous power	
MP: Starts and Hours Failure					down store. Starts and Hours may	
					have been lost for the last 24	
					hours.	
Check Clock	Platform	Warning	Latch	Ali	The real time clock had detected	Remote
Check Clock					loss of its oscillator at some time	
Check Clock					in the past. Check / replace	
					battery? This diagnostic can be	
					effectively cleared only by writing	
					a new value to the chiller's time	
					clock using the TechView or	
					DynaView's "set chiller time"	
					functions.	
Phase Protection Fault	Chiller	Immediate	Latch	All	Phase protection module	Local
Phase Protection Fault					recognized a phase loss or phase	
Phase Protection Fault					reversal of the line power.	
Low Pressure Cutout	Circuit	Immediate	Latch	All	The suction refrigerant pressure	Local
Low Pressure Cutout	onoun	minoulate	Laton	7.11	fell below the low pressure cutout	Loodi
Low Pressure Cutout					trip point. See the Very Low	
					Suction Pressure below for more	
					details.	
Very Low Suction Pressure – Circuit 1	Chiller	Immediate	Latch	All	The circuit's suction pressure	Local
Very Low Suction Pressure – Circuit 1				[circuit in	dropped below (Low Pressure	
Very Low Suct Press – Ckt 1				manual	Cutout Setpoint (kPa absolute) *	
				lockout]	0.5) regardless of whether or not	
					compressors are running on that	
					circuit. This diagnostic was	
					created to prevent compressor	
					failures due to cross-binding by	
					forcing an entire chiller shutdown.	
					If a given circuit is locked out, the	
					suction pressure transducer	
					associated with it will be excluded	
					from causing this diagnostic.	

Very Low Suction Pressure – Circuit 2 Very Low Suction Pressure – Circuit 2	Chiller	Immediate	Latch	All [circuit in	The circuit's suction pressure dropped below (Low Pressure	Local
Very Low Suct Press – Ckt 2				manual lockout]	Cutout Setpoint (kPa absolute) * 0.5)	
					regardless of whether or not compressors are running on that	
					circuit. This diagnostic was created to prevent compressor	
					failures due to crossbinding by forcing an entire chiller shutdown.	
					If a given circuit is locked out, the	
					suction pressure transducer associated with it will be excluded	
High Discharge Temperature	Circuit	Immediate	NonLatch		from causing this diagnostic. The discharge temperature	Local
High Discharge Temperature High Discharge Temperature				[Ckt Not Energized]	exceeded the limits for the compressor.	
High Discharge Temperature Lockout High Discharge Temperature Lockout High Discharge Temp Lockout	Circuit	Immediate	Latch	ĂII	High discharge temperature diagnostics occurred over 210 minutes.	
	Caree					
Compressor Fault <i>Compressor Fault</i> Compressor Fault	Cprsr	Immediate	NonLatch	All	The compressor fault switch input is open.	Local
Compressor Fault Lockout Compressor Fault Lockout Compressor Fault Lockout	Cprsr	Immediate	Latch	All	The compressor fault switch input remained open for more than 35 minutes.	Local
					Five compressor fault diagnostics have occurred within the last 210 minutes.	
BAS Failed to Establish Communication BAS Failed to Establish Communication	Chiller	Special	NonLatch	At power-up	The BAS was setup as "installed" and the BAS did not communicate with the MP within 15 minutes after power-up.	Remote
BAS Failed to Establish Comm BAS Communication Lost	Chiller	Special	NonLatch	All	The BAS was setup as "installed"	Remote
BAS Communication Lost BAS Communication Lost					at the MP and the LCI-C LLID lost communications with the BAS for 15 continuous minutes after it had	
LCI-C Software Mismatch: Use BAS	Chiller	Warning	NonLatch	All	been established. LCI-C Neuron software and LCI-C	Remote
Tool LCI-C Software Mismatch: Use BAS	ormer	Warning	NonEaterr	7.01	IPC3 software do not match. Load new LCI-C Neuron software using	Remote
<i>Tool</i> <u>LCI-C Software: Use BAS Tool</u>					LonTalk service tool.	
External Chilled/Hot Water Setpoint External Chilled/Hot Water Setpoint Ext Chilled/Hot Water Setpt	Chiller	Warning	NonLatch	All	a. Function Not "Enabled": no diagnostics. B. "Enabled ": Out- Of-Range Low or Hi or bad LLID,	Remote
					set diagnostic, default CWS/HWS to next level of priority (e.g. Front	
					Panel SetPoint). This Warning diagnostic will automatically reset if the input returns to the normal	
					range.	

	Chillor	Warning			b Eurotion Not "Enabled": no	Domoto
External Demand Limit Setpoint	Chiller	Warning	NonLatch	All	a. Function Not "Enabled": no	Remote
External Demand Limit Setpoint					diagnostics. B. "Enabled ": Out-	
<u>External Demand Limit Setpt</u>					Of-Range Low or Hi or bad LLID,	
					set diagnostic, default DLS to next	
					level of priority (e.g. Front Panel	
					SetPoint). This Warning	
					diagnostic will automatically reset	
					if the input returns to the normal	
	Cinevit			Onenational	range.	Demete
Circuit Pumpdown Terminated	Circuit	Warning	Latching	Operational/	The procedure did not terminate	Remote
Circuit Pumpdown Terminated				Service	normally by reaching the	
Circuit Pumpdown Terminated				Pumpdown [All	termination pressure within the	
				Except	allotted time.	
					See "Compressor Operational	
				and Service	Pump Down," p. 136 or	
				Pumpdown]	"Compressor Service Pump Down	
					Procedure," p. 136.	
Chilled Water Flow (Entering Water	Chiller	Immediate	Latching	Any Ckt(s)	The entering evaporator water	Remote
Temp)				-	temp fell below the leaving	
Chilled Water Flow (Entering Water				Ckt(s)	evaporator water temperature by	
Temp)				Energized]	more than 3°F for 100°F-sec while	
Chilled Wtr Flow (Ent Temp)				0 -	at least one compressor was	
					running.	
Inverted Water Temp (Heating)	Chiller	Immediate	Latching	Unit energized	The leaving evaporator water	Remote
Inverted Water Temp (Heating)	onnior	miniculato	Latorning	and all ckts'	temp fell below the entering	Remote
					evaporator water temperature by	
Inverted Wtr Temp (Heating)				reversing	1 1 3	
				valves in	more than 3°F for 100°F-sec.	
				heating	There is a 60 second ignore time	
				direction [Unit	after the condition to enable the	
				de-energized	diagnostic is met. During the	
				or any ckt's	ignore time, the temperature	
				5	error is not integrated.	
				in cooling	chor is not integrated.	
				direction]		
	Chiller	Warning and	NonLatch		a. The leaving chilled water	Remote
Low Evap Leaving Water Temp: Unit			NULLAICH			Kennote
Off	or	Special			temperature fell below the leaving	
Low Evap Leaving Water Temp: Unit	Circuit	Action			water temp cutout setting for 30	
Off				No Ckt(s)	degree F seconds while the Chiller	
Low Evap Leav Wtr Temp: Off				Energized [Any	is in the Stop mode, or in Auto	
				Ckt Eneraized	mode with no compressors	
					running. Energize Evap Water	
					pump Relay until diagnostic auto	
					resets, then return to normal evap	
					pump control. Automatic reset	
					occurs when the temp rises 2°F	
					above the cutout setting for 30	
					minutes. When this diagnostic is	
					active AND Leaving Water	
					Temperature sensor diagnostic	
					(loss of comm or out of range) the	
					Evap Water pump relay shall be	
					de-energized.	
					b. If evaporator protection	
					temperature sensors are	
	1	1	1	1		
					installed the effect is on the	
					installed, the effect is on the	
					installed, the effect is on the appropriate circuit. Else, the effect is on the chiller.	

	Chillor	Immodiato	Nonl atch		The chilled water temp, fell below	Pomoto
Low Evap Leaving Water Temp: Unit On Low Evap Leaving Water Temp: Unit On	Chiller	Immediate and Special	NULLATCH		The chilled water temp. fell below the cutout setpoint for 30 degree	Remote
Low Evap Leaving Water Temp: Onit On Low Evap Leav Wtr Temp: On	or	Action		Ckt(s)	F Seconds while a compressor was	
Low Evap Leav Wir Temp: On	Circuit	ACTION				
				Energized]	running. Automatic reset occurs	
					when the temperature rises 2 °F	
					above the cutout setting for 2	
					minutes. This diagnostic shall not	
					de-energize the Evaporator Water	
					Pump Output. If this diagnostic is	
					active the Low Evap Leaving	
					Water Temp: Unit Off diagnostic	
					shall be suppressed.	
					If evaporator protection	
					temperature sensors are	
					installed, the effect is on the	
					appropriate circuit. Else, the	
	Circuit	Immediate	Lotok	Circult	effect is on the chiller.	1 0 0 0 1
Low Refrigerant Temperature	Circuit	Immediate	Latch	Circuit	The suction saturated refrigerant	Local
Low Refrigerant Temperature				Energized	temperature dropped below the	
Low Refrigerant Temperature				[Service	Low Refrigerant Temperature	
				Pumpdown,	Cutout Setpoint for 16.67°C-	
				Operational	seconds (30°F-seconds). See	
				Pumpdown]	"Low Refrigerant Temp Cutout:,"	
					p. 88 for min/max information or	
					"Capacity Limited by Low Evap	
					Rfgt Temp," p. 129 for limit	
					conditions.	
High Evaporator Water Temperature	Chiller	Info and	NonLatch	Only effective if	The leaving water temperature	Remote
High Evaporator Water Temperature		Special		either	exceeded the high evap water	
High Evap Water Temperature		Action		1) Evaporator	temp setting (TV service menu	
				Water Flow	settable	
					– default 55.0°C (131°F)) for 15	
				Overdue,	. ,,	
					continuous seconds. The	
				Water Flow	evaporator water pump relay will	
				Lost,	be de-energized to stop the	
				3) Low Evap	pump, but only if it is running due	
				Water Temp:	to one of the diagnostics listed on	
				Unit Off,	the left. The diagnostic will auto	
				diagnostic is	reset and the pump will return to	
				active.	normal control when the	
				active.	temperature falls 2.778°C (5°F)	
					below the trip setting. The	
					primary purpose is to stop the	
					evaporator water pump and its	
					associated pump heat from	
					causing excessive water-side	
					temperatures and water-side	
					pressures when the unit is not	
					running but the evap pump is on	
					due to either Evaporator Water	
					Flow Overdue, Evaporator Water	
					Flow Lost, or Low Evap Water	
					Temp – Unit Off diagnostics. This	
					diagnostic will not auto clear	
					solely due to the clearing of the	
					enabling diagnostic.	
				1		
					*at unit installation especially	
					*at unit installation, especially	
					reversible units, high evap water	

High Suction Refrigerant Pressure	Chiller	Immediate	NonLatch	All	Any circuit's suction pressure has	Remote
High Suction Refrigerant Pressure					risen above 95% of the high	
High Suction Rfgt Press					pressure cutout setting. The	
					evaporator water pump relay will	
					be de-energized to stop the pump	
					5 1 1 1	
					regardless of why the pump is	
					running. The diagnostic will auto	
					reset and the pump will return to	
					normal control when all circuits'	
					suction pressures fall below 85%	
					of the high pressure cutout	
					setting.	
					The primary purpose is to stop the	
					evaporator water pump and its	
					associated pump heat from	
					causing refrigerant side pressures	
					close to the relief valve setting	
					when the chiller is not running,	
					such as could occur with	
					Evaporator Water Flow Overdue,	
					Evaporator Water Flow Lost, or	
					Low Evap Water Temp – Unit Off	
					diagnostics. This condition is	
					unlikely unless a discharge	
					isolation valve is installed and	
	Circuit	Immodiato	Latch	A 11	closed.	
High Pressure Cutout	Circuit	Immediate	Latch	All	The high pressure cutout switch	Local
High Pressure Cutout					recognized a high pressure. See	
High Pressure Cutout					High Suction Refrigerant Pressure	
					above for more details.	
High Discharge Refrigerant Pressure	Circuit	Immediate	Latch	All	Discharge pressure exceeded the	Local
High Discharge Refrigerant Pressure					high pressure cutout setpoint +	
<u>High Discharge Rfgt Press</u>					100 kPa. Likely cause: failed or	
					incorrectly set high pressure	
					cutout switch. Prevents release of	
					refrigerant through relief valve.	
Emergency Stop	Chiller	Immediate	Latch	All	Emergency Stop input is open.	Local
	ormor	minoulato	Laton	7.01	Entergeney etop inpat is open.	Loodi
Emergency Stop						
Emergency Stop						
Starts/Hours Modified	Cprsr	Warning	NonLatch	All	A counter for compressor starts or	NA
	Opisi	warning				11/7
Starts/Hours Modified					hours has been modified by	
Starts/Hours Modified					TechView. This diagnostic is	
					immediately and automatically	
					cleared and thus can only be seen	
					in the historic diagnostic list.	
Evaporator Pump Starts/Hours	Chiller	Warning	NonLatch	All	A counter for evaporator pump	NA
Modified					starts or hours has been modified	
Evaporator Pump Starts/Hours					by TechView. This diagnostic is	
Modified					immediately and automatically	
Evap Pmp Starts/Hrs Modified						
					cleared and thus can only be seen	
	Chiller	Immodiate	Non		in the historic diagnostic list. After the pump request was	
Evaporator Water Flow Lost	Chiller	Immediate		All		Remote
Evaporator Water Flow Lost		and Special			activated, water flow was	
Evap Water Flow Lost		Action			established and then lost. Special	
					action is to keep the evap pump	
					request active in a diagnostic	
					override mode. See "Chilled	
					Water Pump Control," p. 59 for more details.	

	Chillor	Immodiato		A11	After the pump request was	Domoto
Evaporator Water Flow Overdue	Chiller	Immediate		All	After the pump request was	Remote
Evaporator Water Flow Overdue Evap Water Flow Overdue		and Special Action			activated, the evaporator water	
Evap Water Flow Overdue		Action			flow overdue wait time elapsed	
					before water flow was	
					established. Special action is to	
					keep the evap pump request	
					active in a diagnostic override	
					mode. See "Chilled Water Pump	
					Control," p. 59 for more details.	
Evaporator Water Flow Lost – Pump 1	Chiller	Warning and	NonLatch	All	For dual evaporator pump	Remote
Evaporator Water Flow Lost – Pump 1		Special			configurations only. Evaporator	
Evap Water Flow Lost		Action			Water Flow Lost diagnostic	
					occurred while Pump 1 was the	
					selected pump. See "Chilled	
					Water Pump Control - Field	
					Supplied Dual Pumps," p. 60 for	
					more details.	
Evaporator Water Flow Lost – Pump 2	Chiller	Warning and	NonLatch	All	For dual evaporator pump	Remote
Evaporator Water Flow Lost – Pump 2		Special			configurations only. Evaporator	
Evap Water Flow Lost		Action			Water Flow Lost diagnostic	
					occurred while Pump 2 was the	
					selected pump. See "Chilled	
					Water Pump Control - Field	
					Supplied Dual Pumps," p. 60 for	
					more details.	
Evaporator Water Flow Overdue –	Chiller	Warning and	NonLatch	All	For dual evaporator pump	Remote
Pump 1		Special			configurations only. Evaporator	
Evaporator Water Flow Overdue –		Action			Water Flow Overdue diagnostic	
Pump 1					occurred while Pump 1 was the	
Evap Water Flow Overdue					selected pump. See "Chilled	
					Water Pump Control - Field	
					Supplied Dual Pumps," p. 60 for	
					more details.	
Evaporator Water Flow Overdue –	Chiller	Warning and	NonLatch	All	For dual evaporator pump	Remote
Pump 2		Special			configurations only. Evaporator	
Evaporator Water Flow Overdue –		Action			Water Flow Overdue diagnostic	
Pump 2					occurred while Pump 2 was the	
Evap Water Flow Overdue					selected pump. See "Chilled Water	
					Pump Control - Field Supplied	
					Dual Pumps," p. 60 for more	
					details.	
Fault Detected: Evaporator Water	Chiller		NonLatch	All	For systems with no evaporator	Remote
Pump 1		Warning and			pump or a single evaporator	
Fault Detected: Evaporator Water		Special			pump, a normal shutdown shall be	
Pump 1		Action			performed. For multiple pump	
Fault: Evap Water Pump					systems, detection of a pump	
					fault will generally cause pump	
					control to switch to the redundant	
					pump. See "Chilled Water Pump	
					Control - Field Supplied Dual	
					Pumps," p. 60 for more details.	
Fault Detected: Evaporator Water	Chiller	Normal or	NonLatch	All	For systems with no evaporator	Remote
Pump 2	Chinor	Warning and	. ton Euton	111	pump or a single evaporator	11011010
Fault Detected: Evaporator Water		Special Action			pump, a normal shutdown shall be	
Pump 2					performed. For multiple pump	
Fault: Evap Water Pump					systems, detection of a pump	
<u> </u>					fault will generally cause pump	
					control to switch to the redundant	
					pump. See "Chilled Water Pump	
					Control - Field Supplied Dual	
					Pumps," p. 60 for more details.	

Fan Fault	Circuit	Warning	Latch	All	The fan deck is indicating a fault.	Local
Fan Fault		5			5	
Fan Fault						
Fan Inverter Fault	Circuit	Warning	NonLatch	All	The fan inverter fault input is	Local
Fan Inverter Fault					ignored for the first 5 seconds of	
Fan Inverter Fault					start up to allow variable speed	
					drives to power up.	
Low Suction Superheat	Circuit	Immediate	Latch		Measured suction superheat stays	Local
Low Suction Superheat				[Ckt Not	below 2.22 °C for one continuous	
Low Suction Superheat				Energized]	minute, with a 1 minute ignore	
					time fro m the start of the circuit.	
					Suction Superheat = suction temp	
					 sat. suction temp. 	
High Compressor Pressure Differential	Circuit	Immediate	Latch	Ckt Energized		Local
High Compressor Pressure Differential				[Ckt Not	differential (discharge pressure	
High Cprsr Press Diff					[absolute] – volume ratio *	
					suction pressure [absolute])	
					exceeds 2550 kPa differential, or	
					exceeds 1862 kPa differential for	
					30 continuous minutes. Nominal	
					volume ratio for R410A	
					compressors is 2.9.	
Low Differential Refrigerant Pressure	Circuit	Normal	Latch	0	The system differential pressure	Local
Low Differential Refrigerant Pressure				[Ckt Not	for the respective circuit was	
Low Differential Rfgt Press				Energized]	below 90 psid for more than 4000	
					psid-sec, with a 2.5 minute ignore	
	Circuit	Normal	Latch	Ckt Eporalzod	time from the start of the circuit. The discharge saturated	Local
Low Discharge Saturated Temperature	Circuit	Normal	Latch			Local
Low Discharge Saturated Temperature					temperature for the respective	
Low Discharge Sat Temp				Energized]	circuit was below 20 °C for more	
					than 3750 °C-sec, with a 10	
					minute ignore time from the start	
					of the circuit. Integration starts	
					after the ignore time is	
	All	Immediate	Latch	All	completed. A software monitor has detected a	Local
Software Error 1001: Call Trane Service Software Error 1001: Call Trane Service	functions	mineulate	Later	711	condition in which there was a	LOCAI
	Tunctions					
Software Error 1001					continuous 1 minute period of compressor operation, with no	
					Evaporator water flow. The	
					presence of this software error	
					message suggests an internal	
					software problem has been	
					detected. The events that led up	
					to this failure, if known, should be	
					recorded and transmitted to Trane	
					Controls Engineering.	

Software Error 1002: Call Trane Service	All	Immediate	Latch	All	A software monitor has detected a	Local
Software Error 1002: Call Trane Service 1	functions				condition in which there was a	
Software Error 1002					continuous 1 minute period of	
					compressor operation, with a	
					misaligned state machine.	
					Reported if state chart	
					misalignment occurred inferred	
					form the Capacity Control, Circuit,	
					or Compressor State Machines	
					being in <i>Stopped state</i> or <i>Inactive</i>	
					<i>state</i> while a compressor was	
					operating and this condition	
					existed for at least 1 minute. The	
					presence of this software error	
					message suggests an internal	
					software problem has been	
					detected. The events that led up	
					to this failure, if known, should be	
					recorded and transmitted to Trane	
					Controls Engineering.	
Software Error 1003: Call Trane Service	All	Immediate	Latch	All	A software monitor has detected a	Local
Software Error 1003: Call Trane Service f	functions				condition in which there was a	
Software Error 1003					continuous 1 minute period of	
					compressor operation, with a	
					misaligned state machine.	
					Reported if state chart	
					misalignment occurred inferred	
					from the Capacity Control, Circuit,	
					or Compressor State Machines	
					remaining in the Stopping state	
					for more than 4 minutes with	
					operating compressors. The	
					presence of this software error	
					message suggests an internal	
					software problem has been	
					detected. The events that led up	
					to this failure, if known, should be	
					recorded and transmitted to Trane	
					Controls Engineering.	

Sensor Failure Diagnostics

Note: 1. The following sensor failure diagnostics will not occur unless that input or output is required to be present by the particular configuration and installed options for the unit. 2. Sensor diagnostics are named by the Functional Name of the input or output that is no longer sending a valid value to the Main Processor, indicating a sensor failure. Some LLIDs may have more than one functional output associated with it. Refer to the unit's wiring diagrams to relate the occurrence of such sensor failure diagnostics back to the physical LLID boards that they have been assigned to (bound).

Diagnostic Name			Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Evaporator Entering Water Temp Sensor Evaporator Entering Water Temp Sensor Evap Ent Water Temp Sensor	Chiller	Normal	Latch	All	Bad Sensor or LLID.	Remote
Evaporator Leaving Water Temp Sensor Evaporator Leaving Water Temp Sensor Evap Leav Water Temp Sensor r	Chiller	Normal	Latch	All	Bad Sensor or LLID	Remote
Outdoor Air Temp Sensor <i>Outdoor Air Temp Sensor</i> <u>Outdoor Air Temp Sensor</u>	Chiller	Normal	Latch	All	Bad Sensor or LLID.	Remote
Discharge Pressure Transducer <i>Discharge Pressure Transducer</i> <u>Discharge Pressure Xdcr</u>	Circuit	Immediat e	Latch	All	Bad Sensor or LLID	Remote
Suction Pressure Transducer Suction Pressure Transducer Suction Pressure Xdcr	Circuit	Immediat e	Latch	All	Bad Sensor or LLID	Remote
Suction Temperature Sensor Suction Temperature Sensor Suction Temperature Sensor	Circuit	Immediat e	Latch	All	Bad Sensor or LLID	Remote
Discharge Temperature Sensor Discharge Temperature Sensor Discharge Temperature Sensor	Circuit	Immediat e	Latch	All	Bad Sensor or LLID	Remote
Heat Recovery Entering Water Temp Sensor Heat Recovery Entering Water Temp Sensor HR Entering Wtr Temp Sensor	Chiller	Warning	Latch	All	Bad Sensor or LLID	Remote
Heat Recovery Leaving Water Temp Sensor Heat Recovery Leaving Water Temp Sensor HR Leaving Wtr Temp Sensor	Chiller	Warning	Latch	All	Bad Sensor or LLID	Remote

Communication Diagnostics

Note: 1. The following communication loss diagnostics will not occur unless that input or output is required to be present by the particular configuration and installed options for the chiller. 2. Communication diagnostics (with the exception of "Excessive Loss of Comm" are named by the Functional Name of the input or output that is no longer being heard from by the Main Processor. Many LLIDs, such as the Quad Relay LLID, have more than one functional output associated with it. A comm loss with such a multiple function board, will generate multiple diagnostics. Refer to the Chiller's wiring diagrams to relate the occurrence of multiple communication diagnostics back to the physical Ilid boards that they have been assigned to (bound).

Diagnostic Name	Affects	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Excessive Loss of Comm Excessive Loss of Comm Excessive Loss of Comm	Chiller	Immediate	Latch	All	Loss of comm with 10 or more of the LLIDs configured for the system has been detected. This diagnostic will suppress the callout of all subsequent comm loss diagnostics. Check power supply(s) and power disconnects – troubleshoot LLID bus using TechView.	Remote
Comm Loss: External Auto/Stop Comm Loss: External Auto/Stop Comm: External Auto/Stop	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Emergency Stop Comm Loss: Emergency Stop Comm: Emergency Stop	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: External Ice Building Control Input Comm Loss: Ext Ice Building Ctrl Input Comm: Ext Ice Building Ctrl	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Chiller shall revert to normal (non-ice building) mode regardless of last state. Continual loss of communication	Remote
Comm Loss: Outdoor Air Temperature <i>Comm Loss: Outdoor Air</i> <i>Temperature</i> <u>Comm: Outdoor Air Temp</u>	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evap Leaving Water Temp Comm Loss: Evap Leaving Water Temp Comm: Evap Leav Water Temp	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evap Entering Water Temp Comm Loss: Evap Entering Water Temp Comm: Evap Ent Water Temp	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote

Comm Loss: Discharge Pressure Transducer Comm Loss: Discharge Pressure Transducer	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm: Discharge Press Xdcr					period.	
Comm Loss: Suction Pressure Transducer Comm Loss: Suction Pressure Transducer	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm: Suction Pressure Xdcr	Claillan		Latel			
Comm Loss: Ext Chilled/Hot Wtr Setpoint Comm Loss: Ext Chilled/Hot Wtr Setpoint Comm: Ext Chil/Hot Wtr Setpt	Chiller	Warning and Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Chiller shall discontinue use of the External Chilled/Hot Water Setpoint source and revert to the next higher priority for setpoint arbitration	Remote
Comm Loss: Ext Demand Limit Setpoint Comm Loss: Ext Demand Limit Setpoint Comm: Ext Demand Limit Setpt	Chiller	Warning and Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Chiller shall discontinue use of the External Demand Limit Setpoint source and revert to the next higher priority for setpoint arbitration	Remote
Comm Loss: Auxiliary Setpoint Command Comm Loss: Auxiliary Setpoint Command Comm: Auxiliary Setpt Cmd	Chiller	Warning and Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Chiller shall discontinue use of the Auxiliary Setpoint and revert to the Chilled Water Setpoint based on setpoint arbitration	Remote
Comm Loss: High Pressure Cutout Switch Comm Loss: High Pressure Cutout Switch Comm: High Press Cutout Sw	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evaporator Water Flow Switch Comm Loss: Evaporator Water Flow Switch Comm: Evap Water Flow Sw	Chiller	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Local BAS Interface Comm Loss: Local BAS Interface Comm: Local BAS Interface	Chiller	Warning and Special Action	NonLatch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Use the last values sent from BAS.	Remote
Comm Loss: Compressor Fault Input Comm Loss: Compressor Fault Input Comm: Compressor Fault Input	Cprsr	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Compressor Run Command Comm Loss: Compressor Run Command Comm: Cprsr Run Command	Cprsr	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote

Comm Loss: Fan Control Relays Comm Loss: Fan Control Relays	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional	Remote
Comm: Fan Control Relays					ID has occurred for a 35-40 second period.	
Comm Loss: Fan Fault <i>Comm Loss: Fan Fault</i> <u>Comm: Fan Fault</u>	Circuit	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Fan Inverter Speed Command <i>Comm Loss: Fan Inverter Speed</i> <i>Command</i> <u>Comm: Fan Inverter Speed Cmd</u>	Circuit	Warning and Special Action	NonLatch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Revert to fixed-speed fan algorithm using remaining fans.	Remote
Comm Loss: Fan Inverter Fault Comm Loss: Fan Inverter Fault Comm: Fan Inverter Fault	Circuit	Warning and Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period. Revert to fixed-speed fan algorithm using remaining fans.	Remote
Comm Loss: Op Status Programmable Relays Comm Loss: Op Status Programmable Relays Comm: Op Status Relays	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Anti-Freeze Heater Relay <i>Comm Loss: Anti-Freeze Heater</i> <i>Relay</i> Comm: Anti-Freeze Heater Rly	Chiller	Warning and Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evaporator Water Pump 1 Relay Comm Loss: Evaporator Water Pump 1 Relay Comm: Evap Water Pump Relay	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evaporator Water Pump 2 Relay Comm Loss: Evaporator Water Pump 2 Relay Comm: Evap Water Pump Relay	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evaporator Pump 1 Fault Input Comm Loss: Evaporator Pump 1 Fault Input Comm: Evap Pump Fault Input	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evaporator Pump 2 Fault Input Comm Loss: Evaporator Pump 2 Fault Input Comm: Evap Pump Fault Input	Chiller	Normal	Latch	AII	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Evap Pump Inverter 1 Run Command <i>Comm Loss: Evap Pump</i> <i>Inverter 1 Run Cmd</i> <u>Comm: Evap Pmp Inv 1 Run</u> <u>Cmd</u>	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote

Comm Loss: Evap Pump	Chiller	Normal	Latch	All	Continual loss of communication	Remote
Inverter 1 Fault Input Comm Loss: Evap Pump Inv 1 Fault Input					between the MP and the Functional ID has occurred for a 35-40 second period.	
Comm: Evap Pmp Inv 1 Flt Inp						
Comm Loss: Evap Pump Inverter 1 Frequency Feedback Comm Loss: Evap Pump Inv 1	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second	Remote
Freq Feedback Comm: Evap Pmp Inv 1 Freq					period.	
Comm Loss: Suction	Circuit	Normal	Latch	All	Continual loss of communication	Remote
Temperature Comm Loss: Suction Temperature					between the MP and the Functional ID has occurred for a 35-40 second beriod.	
Comm: Suction Temperature					penoa.	
Comm Loss: Heat/Cool Switch	Chiller	Normal	Latch	All	Continual loss of communication	Remote
Comm Loss: Heat/Cool Switch					between the MP and the Functional ID has occurred for a 35-40 second	
Comm: Heat/Cool Switch					period.	
Comm Loss: Electronic	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional	Remote
Expansion Valve Comm Loss: Electronic					ID has occurred for a 35-40 second	
Expansion Valve Comm: EXV					period.	
Comm Loss: Cooling EXV	Circuit	Immediate	Latch	All	Continual loss of communication	Remote
Comm Loss: Cooling EXV Comm: Cooling EXV					between the MP and the Functional ID has occurred for a 35-40 second	
Comm Loss: Heating EXV	Circuit	Immediate	Latch	All	period. Continual loss of communication	Remote
Comm Loss: Heating EXV Comm: Heating EXV					between the MP and the Functional ID has occurred for a 35-40 second period.	
Comm Loss: External Night	Chiller	Warning	Latch	All	Continual loss of communication	Remote
Noise Setback Input Comm Loss: Ext Night Noise		and Special Action			between the MP and the Functional ID has occurred for a 35-40 second	
Setback Input		Action			period. External input is excluded	
Comm: Ext Night Noise Inp					from arbitration logic per standard arbitration rules.	
Comm Loss: Night Noise	Chiller	Normal	Latch	All	Continual loss of communication	Remote
Setback Relay Comm Loss: Night Noise					between the MP and the Functional ID has occurred for a 35-40 second	
Setback Relay Comm: Night Noise Setbk Rly					period.	
Comm Loss: Phase Protection	Chiller	Normal	Latch	All	Continual loss of communication	Remote
Fault Input					between the MP and the Functional	
Comm Loss: Phase Protection Fault Input					ID has occurred for a 35-40 second period.	
Comm: Phase Protect Flt Inp						
Comm Loss: Discharge	Circuit	Immediate	Latch	All	Continual loss of communication	Remote
Temperature Sensor Comm Loss: Discharge					between the MP and the Functional ID has occurred for a 35-40 second	
<i>Temperature Sensor</i> Comm: Discharge Temp Sensor					period.	
comm. Discharge remp bensor				1		1
Comm Loss: Subcooler Shutoff	Circuit	Normal	Latch	All	Continual loss of communication	Remote
Comm Loss: Subcooler Shutoff Valve Relay	Circuit	Normal	Latch	All	between the MP and the Functional	Remote
Comm Loss: Subcooler Shutoff	Circuit	Normal	Latch	All		Remote

Comm Loss: Heat Recovery Entering Water Temperature Sensor Comm Loss: HR Entering Water Temperature Comm: HR Entering Water. Temp	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Heat Recovery Leaving Water Temperature Sensor <i>Comm Loss: HR Leaving Water</i> <i>Temperature</i> <u>Comm: HR Leaving Water</u> <u>Temp</u>	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Reversing Valve Comm Loss: Reversing Valve Comm: Reversing Valve	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Percent Capacity Output Comm Loss: Percent Capacity Output Comm: Percent Capacity Out	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote
Comm Loss: Receiver Fill Valve Relay Comm Loss: Receiver Fill Valve Relay Comm: Receiver Fill VIv Rly	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 35-40 second period.	Remote

Main Processor- Boot Messages and Diagnostics

DynaView Display Message	Description
Boot Software Part Numbers:	Troubleshooting The "boot code" is the portion of the code that is resident in all MPs regardless of what
LS Flash> 6200-0318-XX MS Flash> 6200-0319-XX	application code (if any) is loaded. Its main function is to run power up tests and provide a means for downloading application code via the MP's serial connection. The Part numbers for the code are displayed in the lower left hand corner of the DynaView during the early portion of the power up sequence and during special programming and converter modes. See below. For the EasyView, the extension of the boot code part number is displayed for
	approximately 3 immediately following power up. // This is normal, but you should provide this information when contacting Technical Service about power up problems.
Err2: RAM Pattern 1 Failure	There were RAM errors detected in RAM Test Pattern #1. // Recycle power, if the error persists, replace MP.
Err2: RAM Pattern 2 Failure	There were RAM errors detected in RAM Test Pattern #2. //Recycle power, if the error persists, replace MP.
Err2: RAM Addr Test #1 Failure	There were RAM errors detected in RAM Address Test #1. // Recycle power, if error persists, replace MP.
Err2: RAM Addr Test #2 Failure	<pre>// Recycle power, if error persists, replace MP. There were RAM errors detected in RAM Address Test #2. //Recycle power, if the error persists, replace MP.</pre>
No Application Present	No Main Processor Application is present – There are no RAM Test Errors.
Please Load Application	// Connect a TechView Service Tool to the MP's serial port, provide chiller model number (configuration information) and download the configuration if prompted by TechView. Then proceed to download the most recent RTAC application or specific version as recommended by Technical Service.
MP: Invalid Configuration	MP has an invalid configuration based on the current software installed
MP Application Memory CRC Error	software in the MP is not complete – software download to the MP was not completed successfully - or MP hardware problem. Note: User should attempt to reprogram the MP if this diagnostic occurs.
App Present. Running Selftest Selftest Passed	An application has been detected in the Main Processor's nonvolatile memory and the boot code is proceeding to run a check on its entirety. 8 seconds later, the boot code had completed and passed the (CRC) test.
App Present. Running Selftest Err3: CRC Failure	// Temporary display of this screen is part of the normal power up sequence. An application has been detected in Main Processor's nonvolatile memory and the boot code is proceeding to run a check on its entirety. A few seconds later, the boot code had completed but failed the (CRC) test.
	//Connect a TechView Service Tool to the MP's serial port, provide chiller model number (configuration information) and download the configuration if prompted by TechView. Then proceed to download the most recent RTAC application or specific version as recommended by Technical Service. Note that this error display may also occur during the programming process, if the MP never had a valid application any time prior to the download. If the problem persists, replace the MP.
A Valid Configuration is Present	A valid configuration is present in the MP's nonvolatile memory. The configuration is a set of variables and settings that define the physical makeup of this particular chiller. These include: number/airflow,/and type of fans, number/and size of compressors, special features, characteristics, and control options. // Temporary display of this screen is part of the normal power up sequence.

Err4: UnHandled Interrupt	An unhandled interrupt has occurred while running the application code. This event will
Restart Timer:	normally cause a safe shutdown of the entire chiller. Once the countdown timer reaches
	O, the processor will reset, clear diagnostics, and attempt to restart the application and
[3 sec countdown timer]	allow a normal restart of chiller as appropriate.
	// This condition might occur due to a severe electro-magnetic transient such as can be caused by a near lightening strike. Such events should be rare or isolated and if no damage results to the CH.530 control system, the Chiller will experience a shutdown and restart. If this occurs more persistently it may be due to an MP hardware problem. Try replacing the MP. If replacement of the MP proves ineffective, the problem may be a result of extremely high radiated or conducted EMI. Contact Technical Service.
	If this screen occurs immediately after a software download, attempt to reload both the configuration and the application. Failing this, contact Technical Service.
Errb: Operating System Error	An Operating System error has occurred while running the application code. This event
Restart Timer:	will normally cause a safe shutdown of the entire chiller. Once the countdown timer
[3 sec countdown timer]	reaches 0, the processor will reset, clear diagnostics, and attempt to restart the application and allow a normal restart of chiller as appropriate.
	// See Err 4 above
Err6: Watch Dog Timer Error	A Watch Dog Timer Error has occurred while running the application code. This event will
Restart Timer:	normally cause a safe shutdown of the entire chiller. Once the countdown timer reaches
[3 sec countdown timer]	0, the processor will reset, clear diagnostics, and attempt to restart the application allowing a normal restart of chiller as appropriate.
Err7: Unknown Error	An unknown Error has occurred while running the application code. This event will
Restart Timer:	normally cause a safe shutdown of the entire chiller. Once the countdown timer reaches
	O, the processor will reset, clear diagnostics, and attempt to restart the application
[3 sec countdown timer]	allowing a normal restart of chiller as appropriate
Err8: Held in Boot by User Key Pre	ssA touch was detected during boot indicating the user wanted to stay in boot mode. This
[3 sec countdown timer]	mode can be used to recover from a fatal software error in the application code. Cycle
Convertor Mode	power on the MP to clear this error if it was unintentional.
Converter Mode	A command was received from the Service Iool (IechView) to stop the running application
	and run in the "converter mode". In this mode the MP acts as a simple gateway and allows
Programming Mode	the TechView service computer to talk to all the LLIDS on the IPC3 bus. A command was received by the MP from the TechView Service Tool and the MP is in the
	process of first erasing and then writing the program code to its internal Flash (nonvolatile)
	Memory. Note that if the MP never had a prior application already in memory, the error
	5 1 11 5 5,
	code "Err3" will be displayed instead of this, during the programming download process.

This section provides field wiring diagrams, electrical schematics and connection diagrams for 20-120 ton CGAM units.

Drawing Number	Description	Page
2309-2075-sheet 1	Schematic - Table of Contents - slant frame	163
2309-2075-sheet 2	Schematic - Device Designators - slant frame	164-165
2309-2075-sheet 3	Schematic - Notes - slant frame	166-167
2309-2075-sheet 4	Schematic - Compressor Power - slant frame	168-169
2309-2075-sheet 5	Schematic - blank	
2309-2075-sheet 6	Schematic - Fan Circuit 1 - slant frame	170-171
2309-2075-sheet 7	Schematic - Fan Circuit 1 continued - slant frame	172-173
2309-2075-sheet 8	Schematic - blank	
2309-2075-sheet 9	Schematic - blank	
2309-2075-sheet 10	Schematic - Water Pumps - slant frame	174-175
2309-2075-sheet 11	Schematic - Compressor Control - slant frame	176-177
2309-2075-sheet 12	Schematic - Fan Control - slant frame	178-179
2309-2075-sheet 13	Schematic - Fan Control continued - slant frame	180-181
2309-2075-sheet 14	Schematic - blank	
2309-2075-sheet 15	Schematic - blank	
2309-2075-sheet 16	Schematic - blank	
2309-2075-sheet 17	Schematic - blank	
2309-2075-sheet 18	Schematic - Common Control - slant frame	182-183
2309-2075-sheet 19	Schematic - CH530 Control - slant frame	184-185
2309-2075-sheet 20	Schematic - Freeze Protection - slant frame	186-187
2309-2075-sheet 1	Schematic - Table of Contents - V frame	188-189
2309-2075-sheet 2	Schematic - Device Designators - V frame	190-191
2309-2075-sheet 3	Schematic - Notes - V frame	192-193
2309-2075-sheet 4	Schematic - Compressor Power - V frame	194-195
2309-2075-sheet 5	Schematic - Compressor Power continued - V frame	196-197
2309-2075-sheet 6	Schematic - Fan Circuit 1 - V frame	198-199
2309-2075-sheet 7	Schematic - Fan Circuit 1 continued - V frame	200-201
2309-2075-sheet 8	Schematic - Fan Circuit 2 - V frame	202-203
2309-2075-sheet 9	Schematic - Fan Circuit 2 continued - V frame	204-205
2309-2075-sheet 10	Schematic - Water Pumps - V frame	206-207
2309-2075-sheet 11	Schematic - Compressor Control - V frame	208-209
2309-2075-sheet 12	Schematic - Fan Control - V frame	210-211
2309-2075-sheet 13	Schematic - Fan Control continued - V frame	212-213
2309-2075-sheet 14	Schematic - blank	
2309-2075-sheet 15	Schematic - blank	
2309-2075-sheet 16	Schematic - blank	
2309-2075-sheet 17	Schematic - blank	
2309-2075-sheet 18	Schematic - Common Control - V frame	214-215

Drawing Number	Description	Page
2309-2075-sheet 19	Schematic - CH530 Control - V frame	216-217
2309-2075-sheet 20	Schematic - Freeze Protection - V frame	218-219
2309-2075-sheet 1	Schematic - Table of Contents - W frame	220-221
2309-2075-sheet 2	Schematic - Device Designators - W frame	222-223
2309-2075-sheet 3	Schematic - Notes - W frame	224-225
2309-2075-sheet 4	Schematic - Compressor Power - W frame	226-227
2309-2075-sheet 5	Schematic - Compressor Power continued - W frame	228-229
2309-2075-sheet 6	Schematic - Fan Circuit 1 - W frame	230-231
2309-2075-sheet 7	Schematic - Fan Circuit 1 continued - W frame	232-233
2309-2075-sheet 8	Schematic - Fan Circuit 2 - W frame	234-235
2309-2075-sheet 9	Schematic - Fan Circuit 2 continued - W frame	236-237
2309-2075-sheet 10	Schematic - Water Pumps - W frame	238-239
2309-2075-sheet 11	Schematic - Compressor Control - W frame	240-241
2309-2075-sheet 12	Schematic - Fan Control - W frame	242-243
2309-2075-sheet 13	Schematic - Fan Control continued - W frame	244-245
2309-2075-sheet 14	Schematic - Fan Control continued - W frame	246-247
2309-2075-sheet 15	Schematic - Fan Control continued - W frame	248-249
2309-2075-sheet 16	Schematic - blank	
2309-2075-sheet 17	Schematic - blank	
2309-2075-sheet 18	Schematic - Common Control - W frame	250-251
2309-2075-sheet 19	Schematic - CH530 Control - W frame	252-253
2309-2075-sheet 20	Schematic - Freeze Protection - W frame	254-255
2309-2076-sheet 1	Field Wiring Diagram	256-257
2309-2076-sheet 2	Field Wiring Diagram Notes	258-259
5720-6468	Diagram - Component Location - slant frame	260-261
5720-6497	Assembly - Device Location Sensor and CH530 - slant frame	262-263
5720-6469	Diagram - Component Location - V frame	264-265
5720-6498	Assembly - Device Location Sensor and CH530 - V frame	266-267
5720-6470	Diagram - Component Location - W frame	268-269
5720-6499	Assembly - Device Location Sensor and CH530 - W frame	270-271

		TRANE Weight and the second and the secon	2	509-2075 , or so the second of
NORTH AMERICA PRODUCTION SLANT FRAME	NO			
TABLE OF CONTENTS				
TITLE	LINE NUMBERS	DRAWING NUMBER	SHEET	
TABLE OF CONTENTS	AN	2309-2075	-	
LEGEND	AN	2309-2075	2	
NOTES	AN	2309-2075	3	
COMPRESSOR POWER CIRCUIT 1	1-72	2309-2075	4	
COMPRESSOR POWER CIRCUIT 2	73-144	2309-2075	5	
FAN POWER CIRCUIT 1	145-216	2309-2075	9	
FAN POWER CIRCUIT 1	217-288	2309-2075	7	
FAN POWER CIRCUIT 2	289-360	2309-2075	œ	
FAN POWER CIRCUIT 2	361-432	2309-2075	თ	
PUMP POWER	433-504	2309-2075	10	
COMPRESSOR CONTROL	505-576	2309-2075	11	
FAN CONTROL, 2 FAN UNITS	577-648	2309-2075	12	
FAN CONTROL, 3 FAN UNITS	649-720	2309-2075	13	
FAN CONTROL, 4 FAN UNITS	721-792	2309-2075	14	
FAN CONTROL, 5 FAN UNITS	793-865	2309-2075	15	
FAN CONTROL, 6 FAN UNITS	866–936	2309-2075	16	
PUMP CONTROL	937-1008	2309-2075	17	
COMMON CONTROL	1009-1080	2309-2075	18	
COMMON CONTROL	1081-1152	2309-2075	19	
FREEZE PROTECTION	1153-1224	2309-2075	20	

TRANE

20-35 Ton - "Slant Frame" - Device Designators

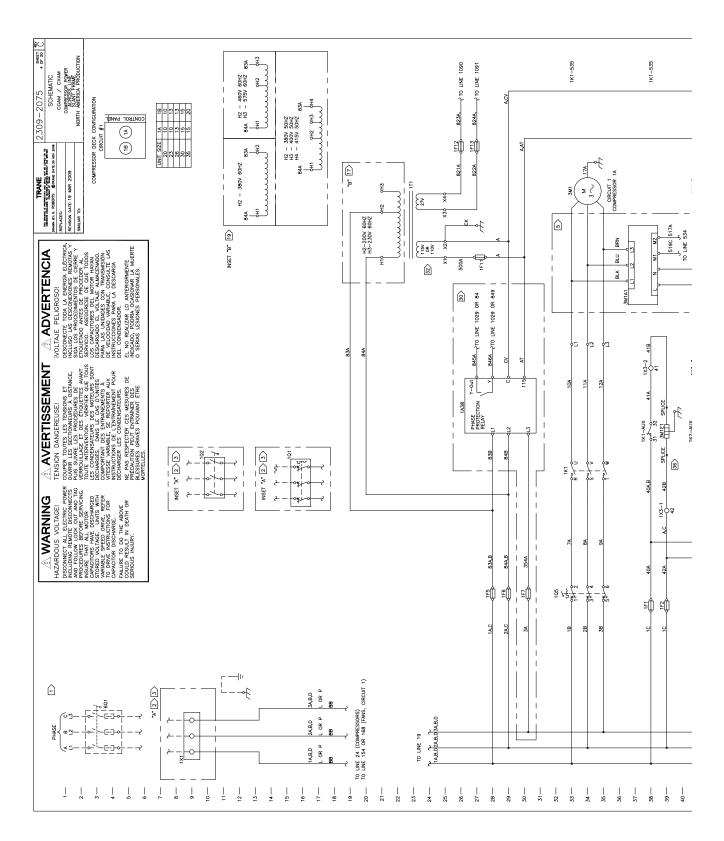
				TRANE MAGNETA REFERENCE OF AND	2
		DRVE DRVE <thdrve< th=""> DRVE DRVE <thd< th=""><th>LOCATION CODE OGATION AUXILIARY PANEL N CIRCUIT 1 N CIRCUIT 2 N ORCUIT 2 N ORCUIT 2</th><th>Numera Array and Arr</th><th>SCHEMATIC SCHEMATIC CCAM DEVICE DESIGNATORS SLATT FRAME NORTH AMERICA PRODUCTION</th></thd<></thdrve<>	LOCATION CODE OGATION AUXILIARY PANEL N CIRCUIT 1 N CIRCUIT 2 N ORCUIT 2 N ORCUIT 2	Numera Array and Arr	SCHEMATIC SCHEMATIC CCAM DEVICE DESIGNATORS SLATT FRAME NORTH AMERICA PRODUCTION
16	GEND			I FGFND	
DESCRIPTION		LINE NUMBER	DEVICE	DESCRIPTION	LINE NUMBER
DYNAVIEW MAIN PROCESSOR MODULE POWER SUPPLY MODULE		1097	381 382	TRANSDUCER, SUCTION REFRIGERANT PRESSURE, CIRCUIT 1 SENSOR, SUCTION REFRIGERANT TEMPERATURE, CIRCUIT 1	1102 1104
COMPRESSOR MOTOR CONTROL: DUAL RELAY OUTPUT HIGH PRESSURE CUTOUT: DUAL HIGH VOLTAGE BINARY INP	INPUT	536 525	383 384 3M1	TRANDUCER, DISCHARGE REFINGERANT PRESSURE, CIRCUIT 1 SENSOR, DISCHARGE REFINGERANT FEMPERATURE, CIRCUIT 1 MOTOR: COMPRESSOR 13, CIRCUIT 1	1106 1109 33
	NARY INPUT	557		ELECTRONIC PROTECTION MODULE, COMPRESSOR 1A, CIRCUIT 1 HEATER, COMPRESSOR 1A, CIRCUIT 1	36 39
CHILLED WATER PUMP CONTROL, DUAL RELAY OUTPUT		1050		MOTOR, COMPRESSOR 1B, CIRCUIT 1 LECETRONIC PROTECTION MODULE, COMPRESSOR 1B, CIRCUIT 1 HATER, COMPRESSOR 1B, CIRCUIT 1	52 41 41
LER WATER PUMP FAULT, DUAL LOW VOLTAGE BINARY	INPUT	1042			
ERNAL EMERGENOT STOP/AUTO STOP, DUAL LOW VOLI TRIAL CHILLER WATER SETPOINT DEMAND &LIMIT: ANOL MUNICATION. LCI-C. DUAL LOW VOLTAGE BINARY INPUT	OG INPUT/OUTPUT	1005	3M4 3M5	MOTOR, FAN 1, CIRCUIT 1 MOTOR, FAN, CIRCUIT 1	156,170 241
MAKING CONTROL, DUAL LOW VOLTAGE BINARY INPUT LER WATER FLOW AND INTERLOCKS, DUAL LOW VOLTAG	E BINARY INPUT	1114 1025			
UNIT OPERATING STATUS, QUAD RELAY OUTPUT CONDENSER FAN CONTROL CIRCUIT 1, QUAD RELAY OUTPUT		1137 599 OR 662	3M9	MOTOR, FAN, CIRCUIT 1	231
FAN INVERT FAULT INPUT, DUAL LOW VOLTAGE BINARY INPUT FAN VSD CONTROL, ANALOG INPUT/OUTPUT	5	1057 1065	LSC LVE	HIGH TRESSURE CUIDUL SWICH, CIRCUIT 1 EXPANSION VALVE, COOLING, CIRCUIT 1	1112
PUMP VSD FREQUENCY, ANOLOG INPUT/OUTPUT OR % CA	CAPACITY	1032			
SD CONDENSER FAN 14 CIRCUIT 1		155			
RELAY, PHASE PROTECTION, CIRCUIT 1		26			
BACNET COMMUNICATION INTERFACE FOR CHILLERS		1126			
FER, BLANKET, 1A36					
HEATER, BLANKEL, 1A36 HEATER, BLANKET, 1A37					
FUSE, COMPRESSOR HEATER, CIRCUIT 1		38,39			
EUSE, CONTROL POWER TRANSFORMER, PRIMARY FUSE, PHASE PROTECTION RELAY, CIRCUIT 1		28,29 30			
E, CONTROL POWER TRANSFORMER, SECONDARY, 115V		27			
FUSE, CONTROL POWER TRANSFORMER, SECONDARY, 24V FUSE, FAN 1A, CIRCUIT 1		26,27 156,171			
RELAY, TWO SPEED FAN, OVERLOAD PROTECTION, CIRCUIT	_	173		SENSOR, EVAPORATOR LEAVING WATER TEMPERATURE SENSOR, EVAPORATOR ENTERING WATER TEMPERATURE	1117
		226		SENSOR, AMBIENT TEMPERATURE SENSOR, WATER FLOW	1121 1020
FUSE, FANS CIRCUIT 1				SENSOR, HEAT RECOVERY ENTERING WATER TEMP SENSOR, HEAT RECOVERY LEAVING WATER TEMP	1117 1119
				HEATER, EVAPORATOR HEATER, BUFFER TANK	1171 1201
CONTACTOR, COMPRESSOR 1A, CIRCUIT 1 CONTACTOR, COMPRESSOR 1B, CIRCUIT 1		535 533		HEATER, WATER PUMP PACKAGE HEATER, EVAPORATOR PIPING	1193 1173,1175
			5E6 5E7	HEATER, WATER PUMP PIPING HEATER, EXPANSION TANK	1186 1186
				HEATER, BUFFER TANK	1203
CONTACTOR, FAN 3M4 CONTACTOR, FAN 3M9		195	5E10 5E11	HEATER, PARTIAL HEAT RECOVERY HEATER, PARTIAL HEAT RECOVERY	1179 1182
TACTOR, FAN 3M5		199		HATER, BUFFER TANK LEADER, BUFFER TANK LEADER, PUFFER TANK	1205
				HEATER, WATER PUMP PACKAGE	1191
CONTACTOR, 2-SPEED FAN 3M4, LOW CONTACTOR, 2-SPEED FAN 3M4, HIGH		174 178	5X1 5X2	BLOCK TERMINAL - EVAPORATOR AND WATER PIPE HEATERS BLOCK TERMINAL - PUMP PACKAGE HEATERS	VARIES VARIES

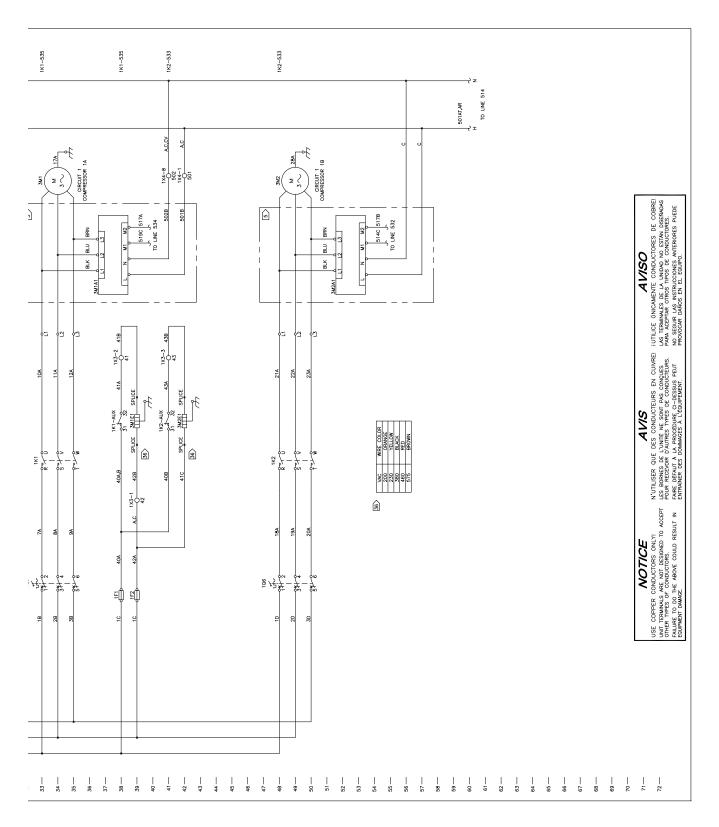
20-35 Ton - "Slant Frame" - Device Designators

	553	5E6 5E7 5E8	HEATER, ENAPORATOR FIPING HEATER, MARTE PUMP PIPING HEATER, ESPUSION TANK HEATER, BUFFER TANK	6/11,6/11 1186 1203
CONTACTOR, FAN 344 CONTACTOR, FAN 344 CONTACTOR, FAN 3445	195 199		HEATER, PARTIAL, HEAT RECOVERY HEATER, BARTIAL, HEAT RECOVERY HEATER, BARTER, TANK HEATER, BATER TANK HEATER, BATER TANK HEATER, WATER PUME PACKAGE	1179 1182 1205 1205 1209 1209
CONTACTOR, 2-SPEED FAN 344, LOW CONTACTOR, 2-SPEED FAN 344, HIGH	174	5X1 5X2 5X3 5X3 5X3	BLOCK TERMINAL - EXAPORATOR AND WATER PIPE HEATERS BLOCK TERMINAL - EVAPP PACKOGE HEATERS BLOCK TERMINAL - BUFFER TANK HEATERS THERMOSTAT, HEATERS	WARES WARES WARES WARES 1171,1190
		6F1-6F2 6K1 6K2 6K2 6K5 6K5	RELAY, CUSTOMER PROVIDED, OVERLOAD PROTECTION, CHILLER WITER PUMP RELAY, CUSTOMER PROVIDED, CHILLED WATER PUMP 1 RELAY, CUSTOMER PROVIDED, CHILLED WATER PUMP 2 RELAY, EDTERNAL INPUT, AUTO/STOP RELAY, EDTERNAL INPUT, DARGENCY, STOP RELAY, EDTERNAL INPUT, DARGENCY, STOP	465,470 463 463 1090 1092 1118
		6K8-15 6M1 6M2 6Q1 6Q3-6Q4 6Q5 6Q6		1137 10 1147 465 470 1 465.470 465.470 1132
FAN, MIN CONTROL FANEL. CRECUIT BREAKER, POWER DISTRUITION, CRECUIT 1 CRECUIT BREAKER, COMPRESSION, CRECUIT 1	518 15 33.44			
WANUAL MOTOR STARTER, FAN JAN, ORGUIT 1 MANUAL MOTOR STARTER, FAN JAN, ORGUIT 1 MANUAL MOTOR STARTER, FAN JAN, ORGUIT 1	170 231 241 241			
HERMOSTAT, JAAN CONTROL PAREL THERMOSTAT, JASD HAUTER BLANKET TRANSFORMER, CONTROL POWER AUTOTRANSFORMER, LAN VSD, CREVLIT 1 BLOCK, TERMINAL – CLUTTOR, PROFINELITION BLOCK, TERMINAL – COMPRESSOR HEATER, CREVLIT 1 BLOCK, TERMINAL – CUSTOWER CONTROL WIRING, 0–1000C BLOCK, TERMINAL – CUSTOWER CONTROL WIRING, 0–1000C BLOCK, TERMINAL – CUSTOWER CONTROL WIRING, 0–1000C BLOCK, TERMINAL – CUSTOWER CONTROL WIRING, 0–1000C	518 520 119 1180 1137 8 8 MARES MARES MARES MARES MARES			

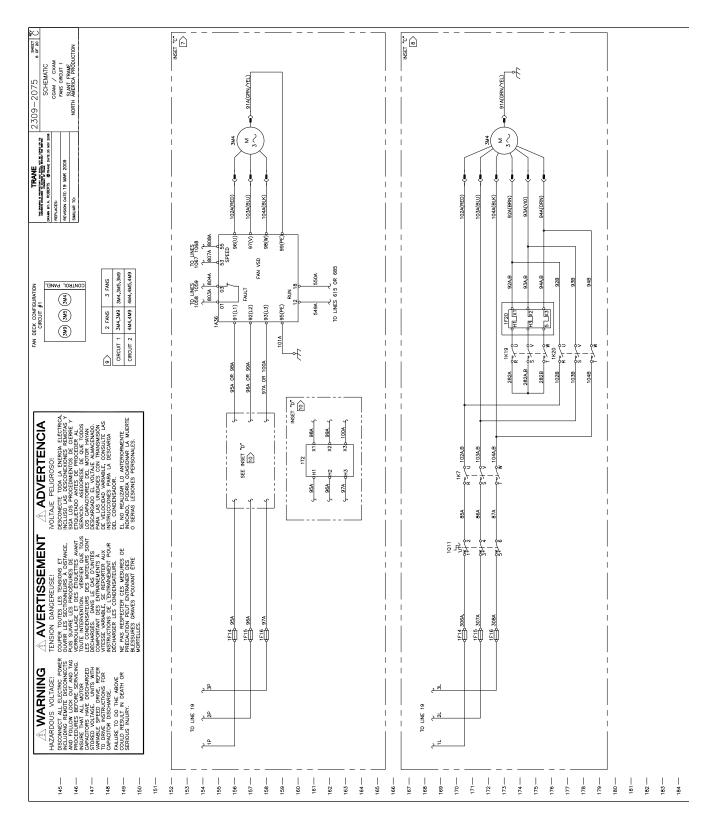
20-35 Ton - "Slant Frame" - Notes

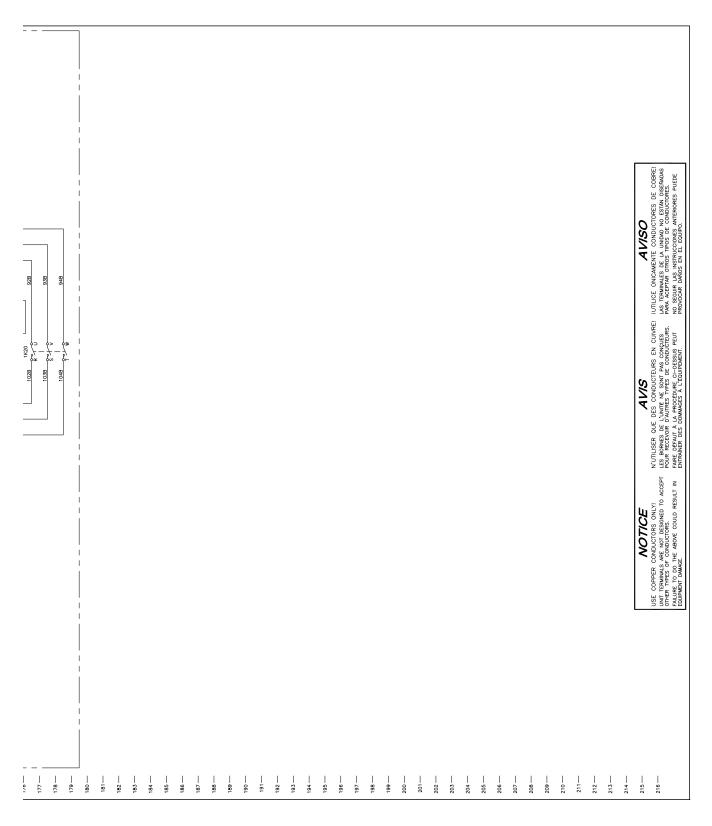
Note Note	FLOG NOTES: T. ALL UNIT POPERTA WHILE MAY THE CAPPER CONDUCTORS ONLY, HAVE A MANUUM INSULATION TRAFERATURE RATING OF 90C T. ALL UNIT POPERTA WHILE MAY STATE RECORDER ON ALL UNITS PROCED FRAM LIPIDATE RATING OF 90C TERMINAL BLOCK IT/11/12/31, E PROVIDED AS STANDARD ON ALL UNITS PROCE-TIRM, CIRCUIT IRREARTH WHEN THIS OFTION IS SELECTED. TRAMMAL BLOCK IT/11/12/31, E PROVIDED AS STANDARD ON ALL UNITS PROCED-TIRM, CIRCUIT IRREARTH WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED WITH ORICUT BREAKER WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED WITH ORICUT BREAKER WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED ON ALL UNITS PROCED-TRAN. CIRCUIT PREVARE WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED ON ALL UNITS PROCED-TRAN. CIRCUIT PREVARE WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED ON ALL UNITS PROCED-TRAN. CIRCUIT PREVARE WHEN THIS OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED ON ALL UNITS PROCED-TRAN. CIRCUIT PREVARE WHEN THE OFTION IS SELECTED. ANULABLE AS OFTION, TERMINAL BLOCK IS REPLACED ON ALL UNITS PROCED ON ALL UNITS PR	 SNUE SEED AN I PRESENT WRY. SNUE SEED AN I PRESENT WRY. Y van MARCEARDEN LONGY WRY. Y van SEED FAN I PRESENT WRY. Y van Y VAN	20 During confrinction variety, numit, constructions a vino construction process, and or certation or last of the process of the proces of the process of the process of the process of the process of t
--	--	---	--


20-35 Ton - "Slant Frame" - Notes

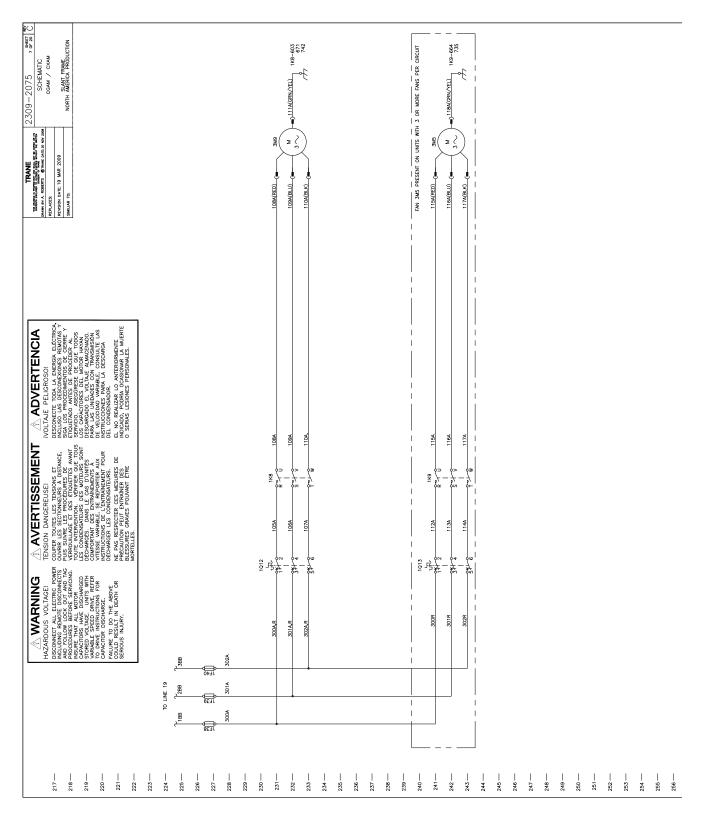

Unit Wiring

20-35 Ton - "Slant Frame" - Compressor Power

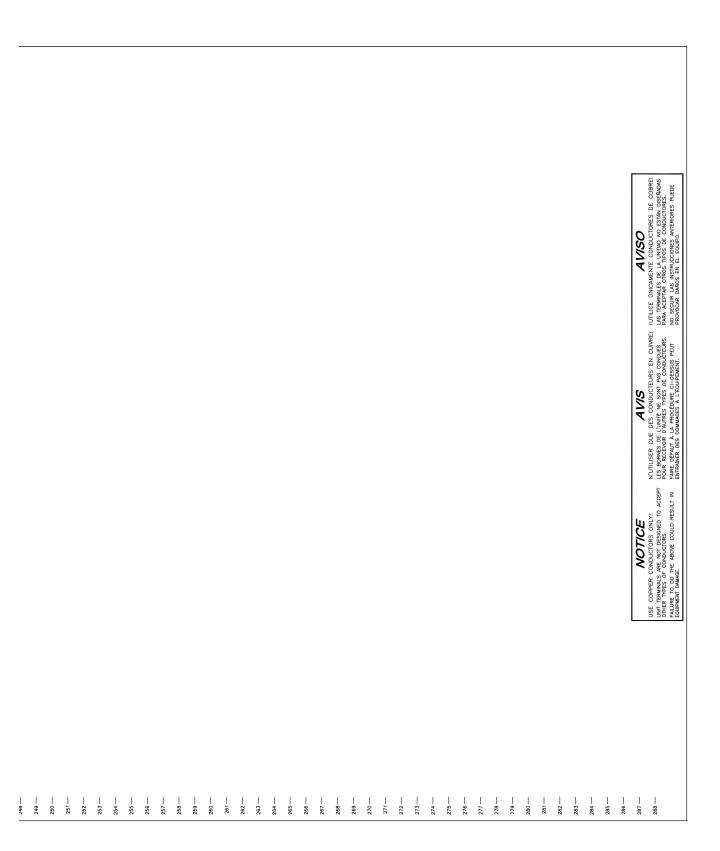

20-35 Ton - "Slant Frame" - Compressor Power


Unit Wiring

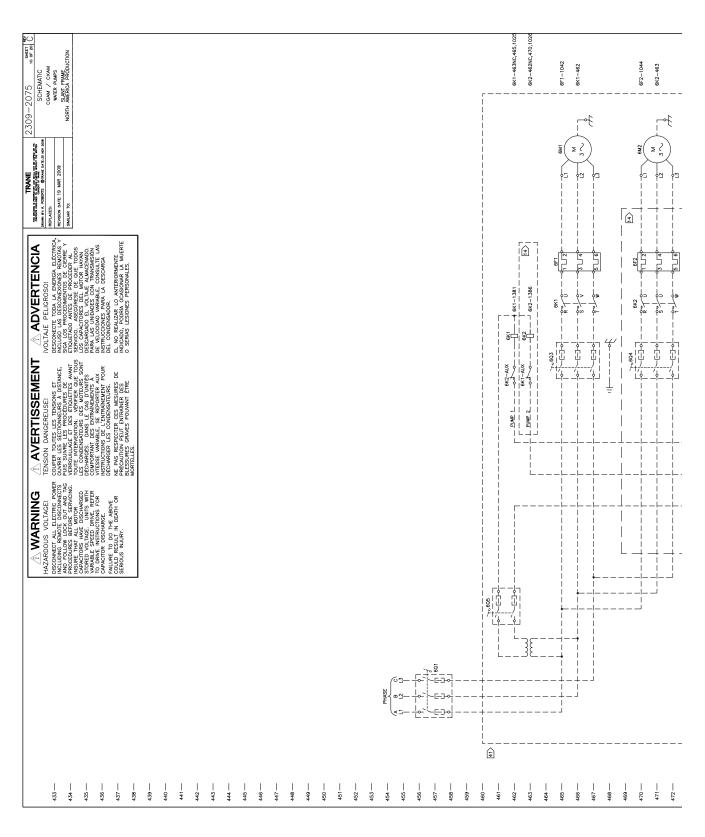
20-35 Ton - "Slant Frame" - Fans Circuit 1

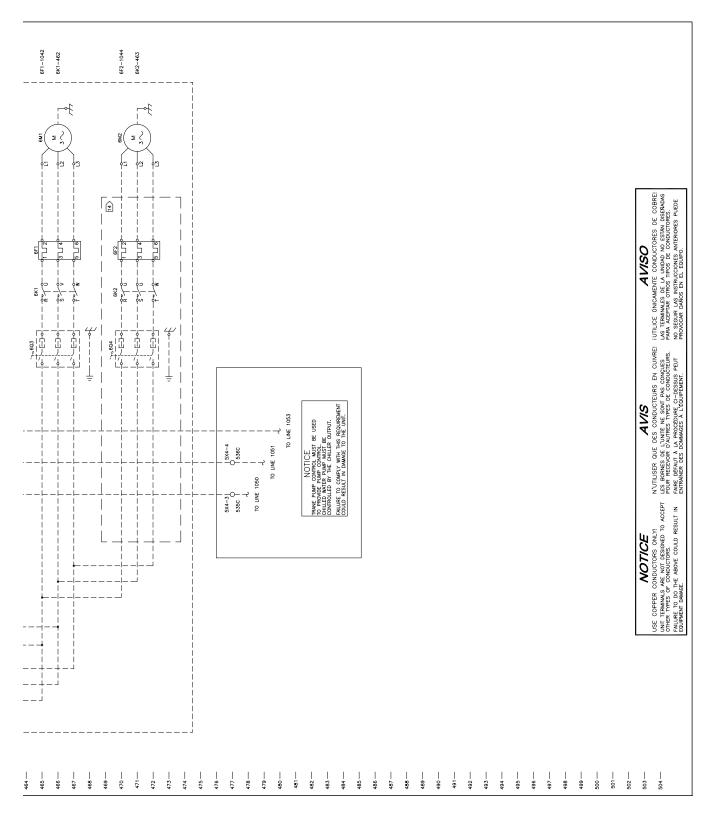


20-35 Ton - "Slant Frame" - Fans Circuit 1

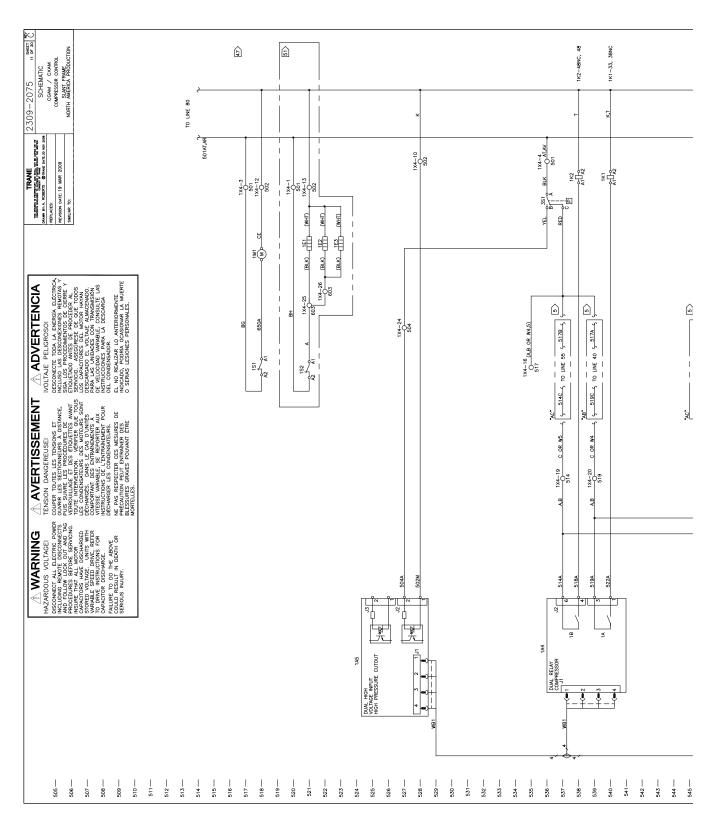


Unit Wiring

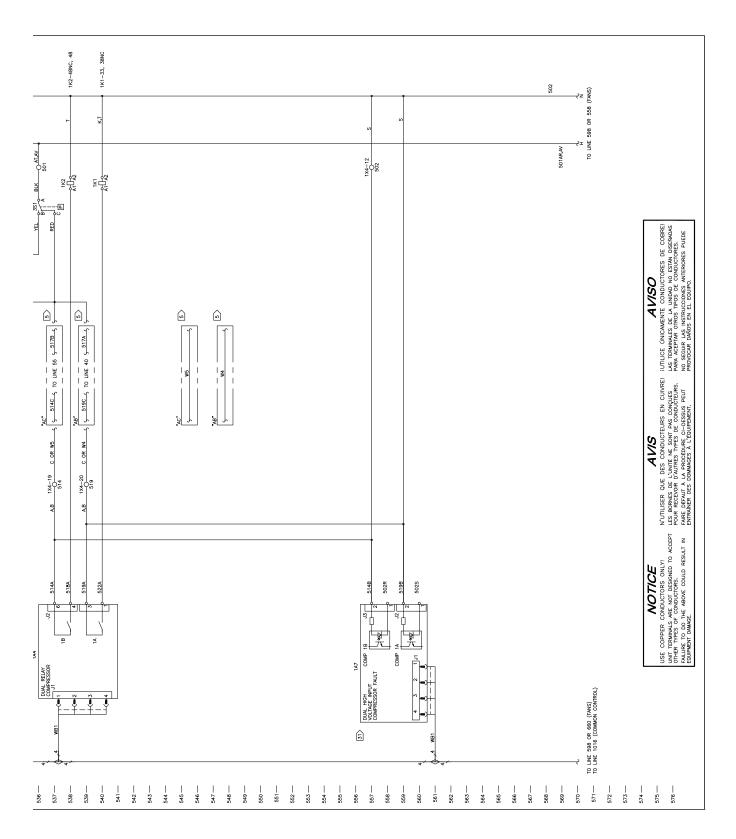

20-35 Ton - "Slant Frame" - Fans Circuit 1 continued


Unit Wiring

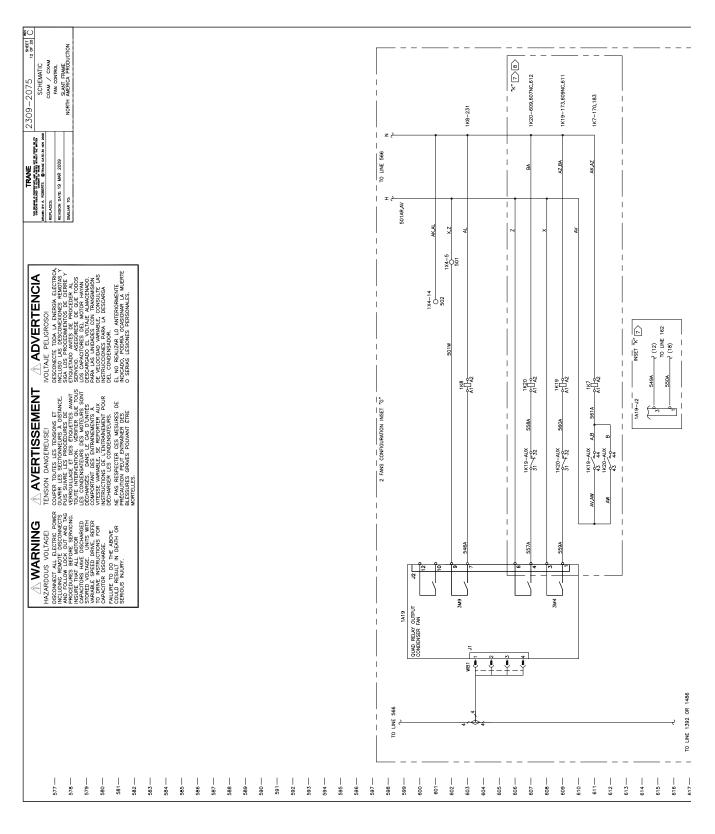
20-35 Ton - "Slant Frame" - Water Pumps



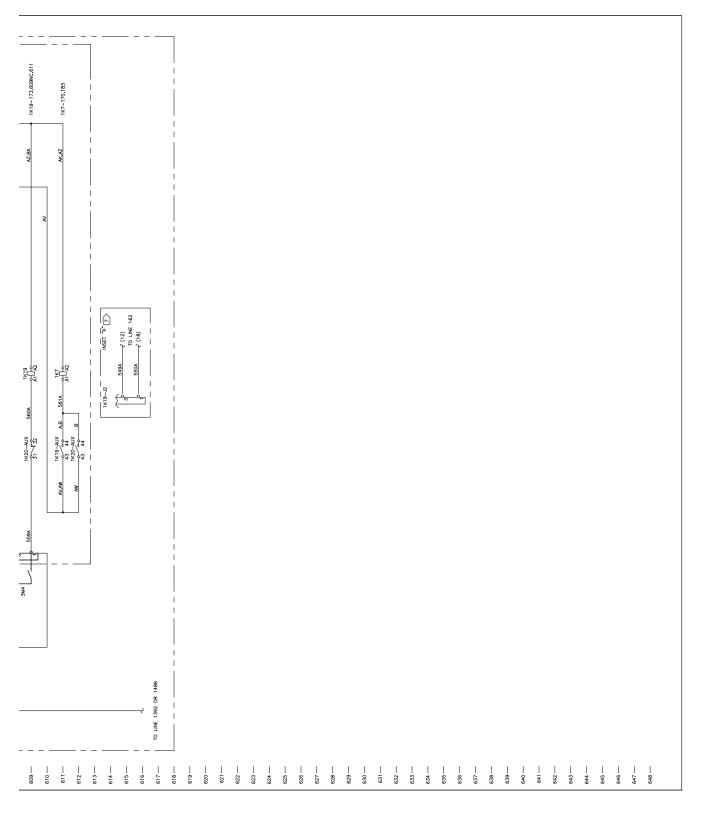
20-35 Ton - "Slant Frame" - Water Pumps



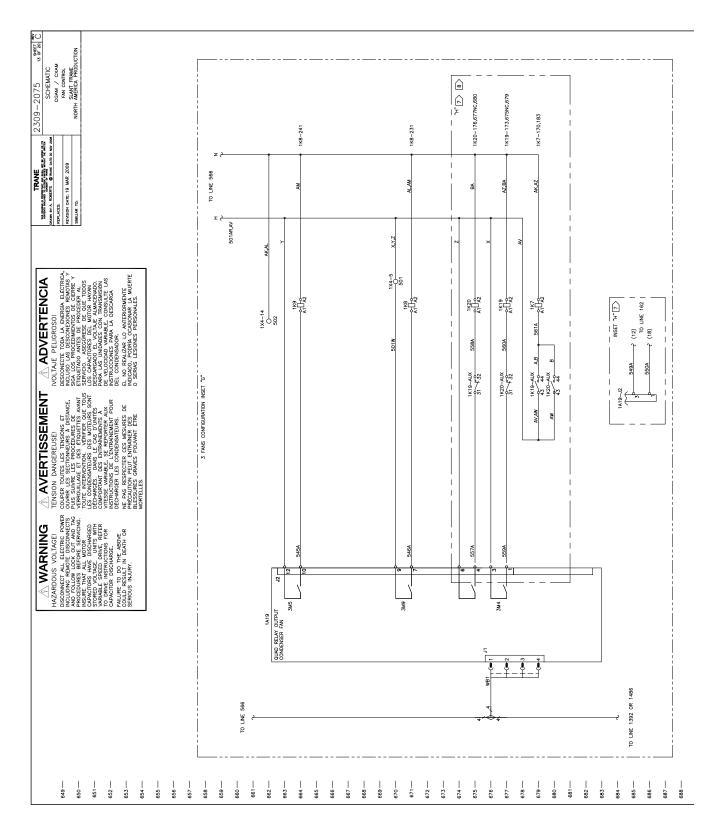
20-35 Ton - "Slant Frame" - Compressor Control



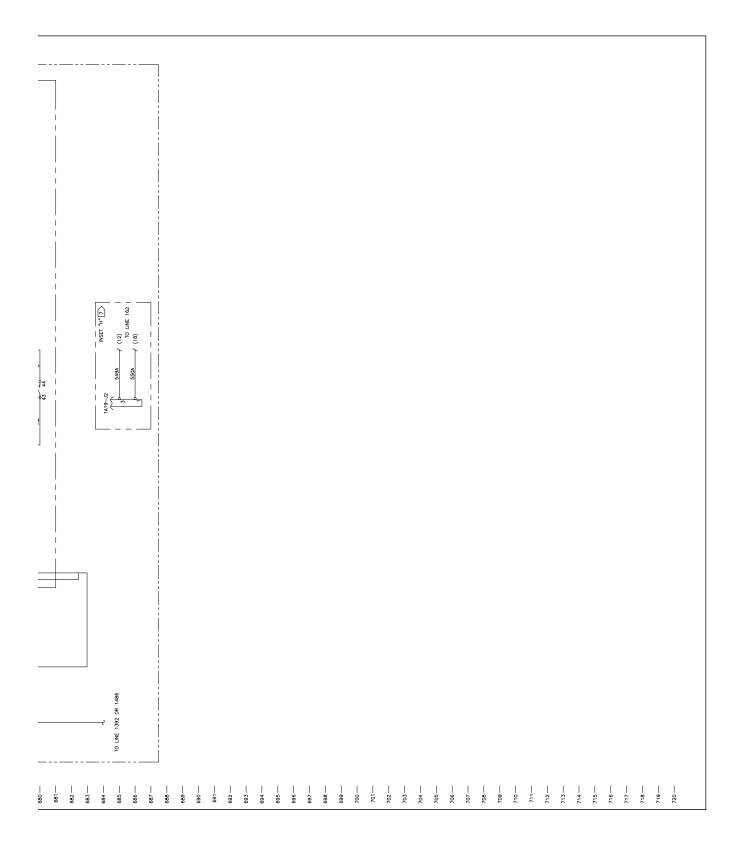
20-35 Ton - "Slant Frame" - Compressor Control

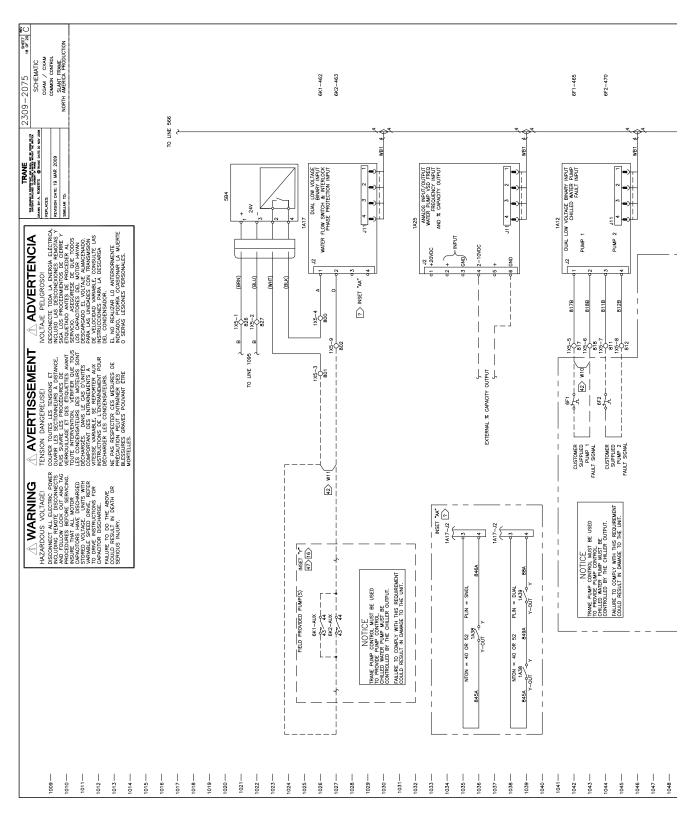


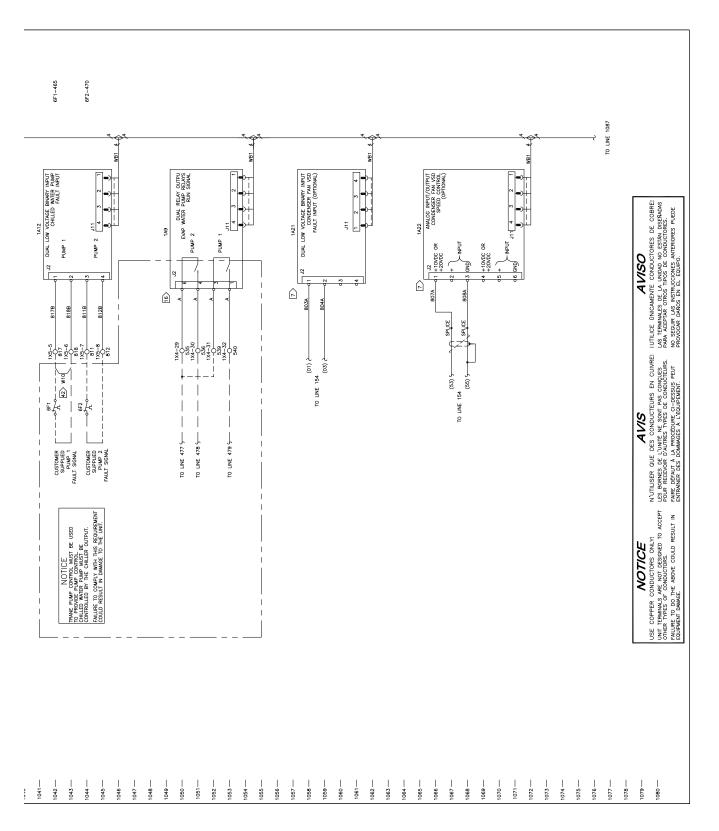
20-35 Ton - "Slant Frame" - Fan Control



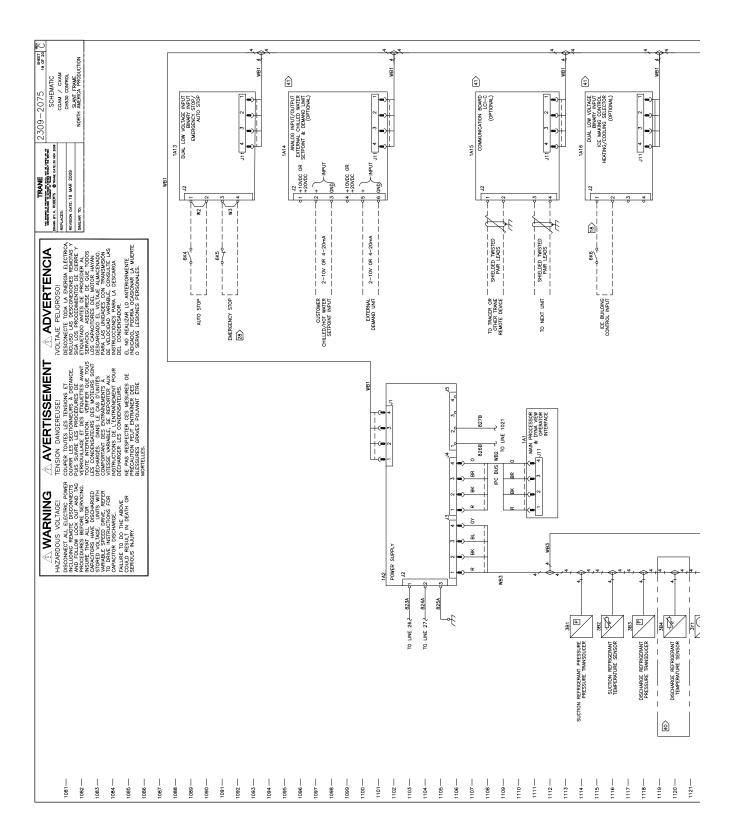
20-35 Ton - "Slant Frame" - Fan Control



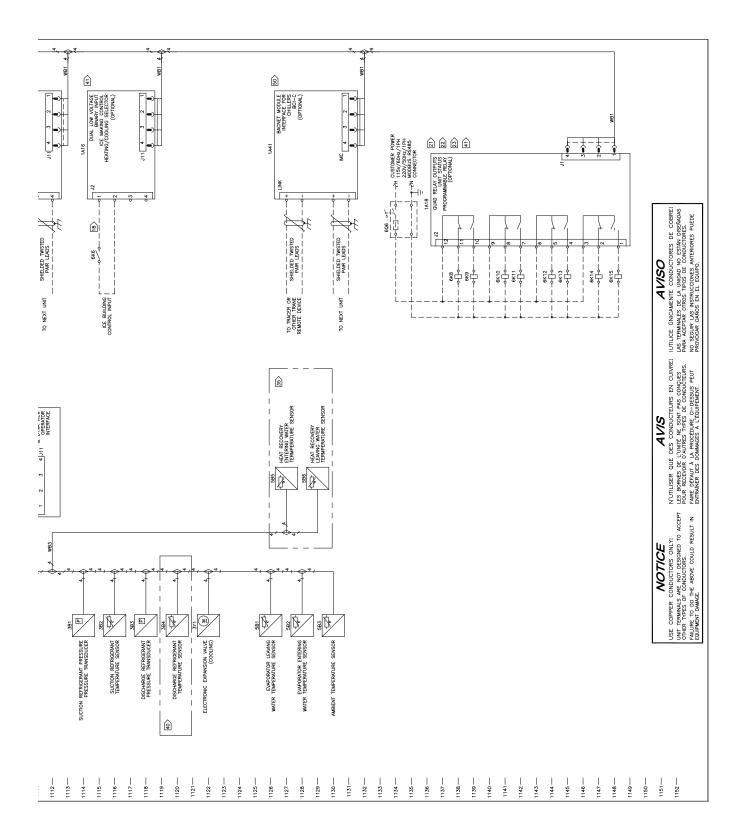

20-35 Ton - "Slant Frame" - Fan Control continued


Unit Wiring

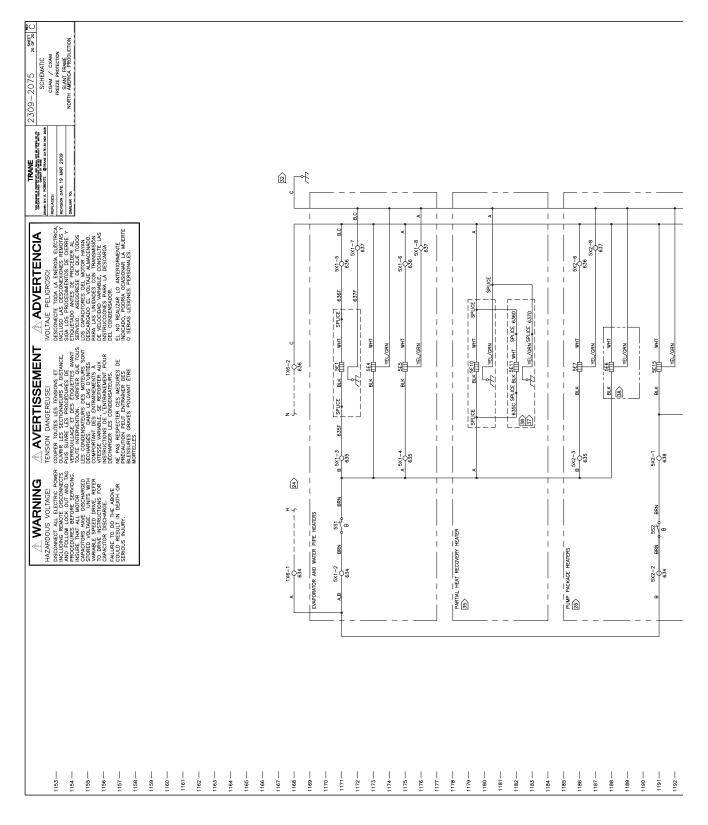
20-35 Ton - "Slant Frame" - Common Control



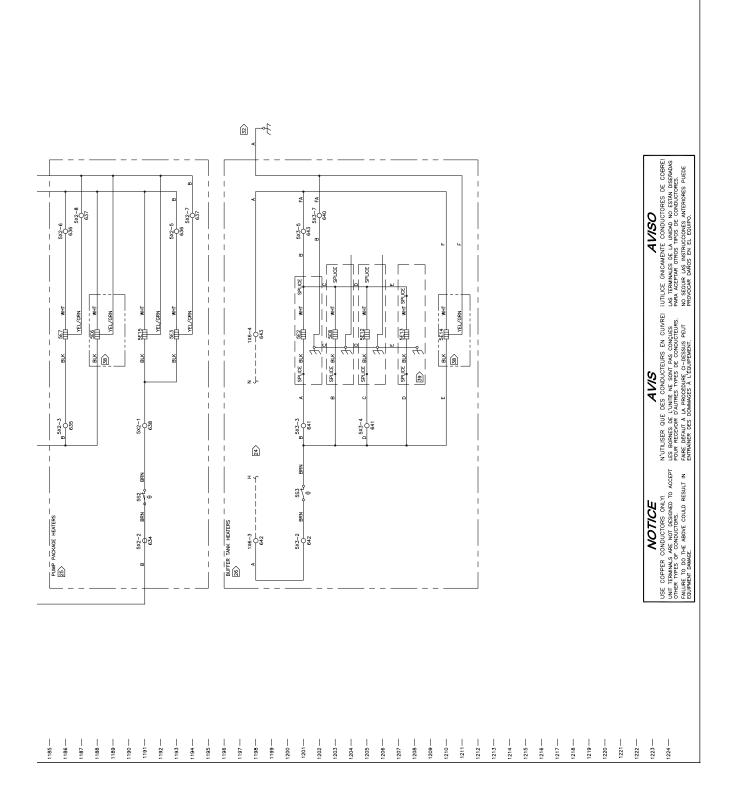
20-35 Ton - "Slant Frame" - Common Control



20-35 Ton - "Slant Frame" - CH530 Control

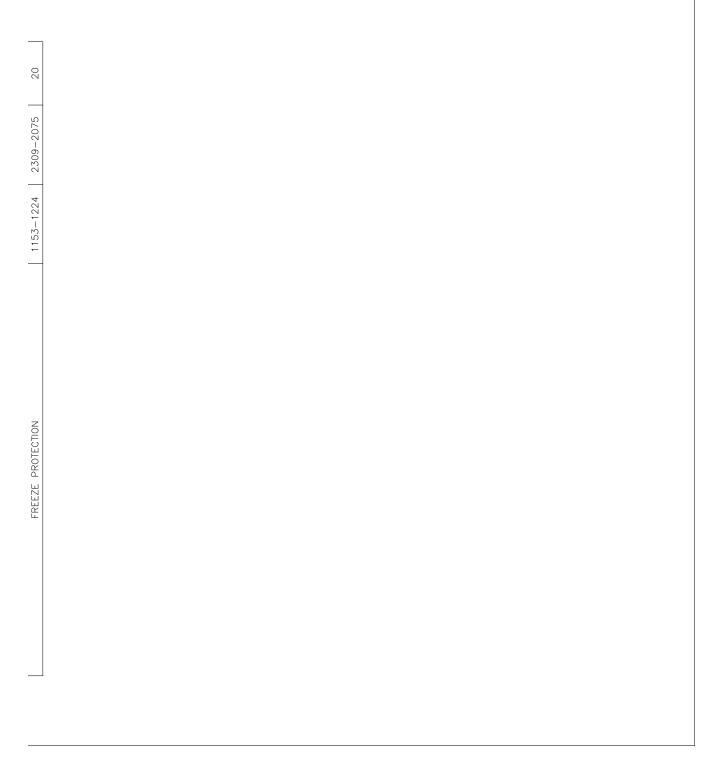


20-35 Ton - "Slant Frame" - CH530 Control



20-35 Ton - "Slant Frame" - Freeze Protection

20-35 Ton - "Slant Frame" - Freeze Protection



40-70 Ton - "V Frame" - Table of Contents

		LINE DRAWING SHEET NUMBERS NUMBERS	A 2309-2075 1	NA 2309–2075 2	NA 2309-2075 3	72 2309-2075 4	144 2309-2075 5	-216 2309-2075 6	217-288 2309-2075 7	-360 2309–2075 8	-432 2309-2075 9	-504 2309–2075 10	-576 2309–2075 11	-648 2309–2075 12	-720 2309–2075 13	-792 2309–2075 14	793-865 2309-2075 15	-936 2309-2075 16	-1008 2309-2075 17	009-1080 2309-2075 18	-1152 2309–2075 19	-1224 2309-2075 20
A PRODUCTION AME	CONTENTS		NA	Z	Z	1-72	73-144	145-216	217-	289-360	361-432	433-504	505-576	577-648	649-720	721-792	262	866-	937-	1009-	1081-1152	1153-1224
NORTH AMERICA PRODUCTION V FRAME	TABLE OF	TITLE	TABLE OF CONTENTS	LEGEND	NOTES	COMPRESSOR POWER CIRCUIT 1	COMPRESSOR POWER CIRCUIT 2	FAN POWER CIRCUIT 1	FAN POWER CIRCUIT 1	FAN POWER CIRCUIT 2	FAN POWER CIRCUIT 2	PUMP POWER	COMPRESSOR CONTROL	FAN CONTROL, 2 FAN UNITS	FAN CONTROL, 3 FAN UNITS	FAN CONTROL, 4 FAN UNITS	FAN CONTROL, 5 FAN UNITS	FAN CONTROL, 6 FAN UNITS	PUMP CONTROL	COMMON CONTROL	COMMON CONTROL	FREEZE PROTECTION

40-70 Ton - "V Frame" - Table of Contents

40-70 Ton - "V Frame"- Device Designators

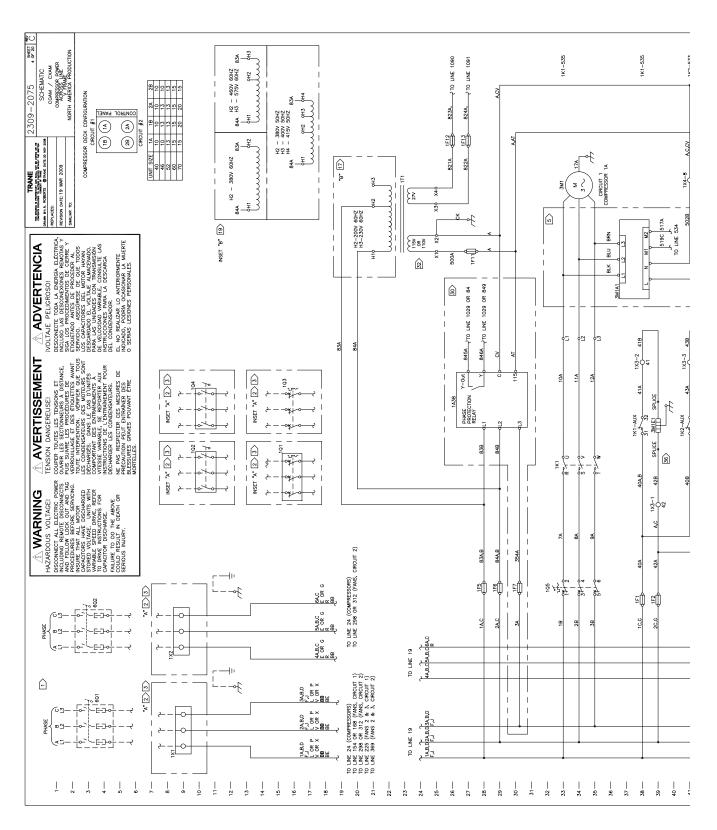
2309–2075 2 ###] C SchEMTIC count of the term bence besonunges Noeth AuEntick Feoduction		LINE NUMBER	1102 1104	1106	33	39	52 41		156 170	241		231	531 1112			1102	1104	1109 93	96	108	112		300,314	343		339 605	525 1112				1117 1119	1121 1020	1117 1119	1171	1193	11/2/11/2	1186 1203	1179	1182 1205	1208	1191			VARIES
TRAVE TREATER TO TREATE TREATER TREATE TREATER TREATE	LEGEND	DESCRIPTION	TRANSDUCER, SUCTION REFRIGERANT PRESSURE, CIRCUIT 1 SENSOR SUCTION BEFRIGERANT TEMPERATILIEF CIRCUIT 1	TRANDUCER, DISCHARCE REFEREERANT PRESSURE, CIRCUIT 1 FRANDUCER, DISCHARCE REFEREERANT PRESSURE, CIRCUIT 1 ESEMANDER PRESPART FRUDERANTIDE CIRCUIT 1	MOTOR, COMPRESSOR 1A, CIRCUIT LEM EXPOSICE, MICOTI I FE ETERONIC DENTETION MOLIE F OMDERSCOR 1A, CIRCUIT 1	LEACHTOWN FRUTENTIAN WOULD, OWE RESSON 14, URVOIL 1 HEATER, COMPRESSON 14, CIRCUIT 1	MUTOR, COMPRESSOR IB, CIRCUIT 1 MELTER ONCE PROTECTION MODULE, COMPRESSOR 1B, CIRCUIT 1 HEATER ORDERSCOR IB CIRCUIT 1		MOTOR FAN 1 CIRCUIT 1	MOTOR, FAN, CIRCUIT 1		MOTOR, FAN, CIRCUIT 1	HIGH PRESSURE CUTOUT SWICH, CIRCUIT 1 EXPANSION VALVE, COOLING, CIRCUIT 1			TRANDUCER, SUCTION REFRIGERANT PRESSURE, CIRCUIT 2	SENSOR, SUCTION REFRIGERANT TEMPERATURE, CIRCUIT 2 TRANDUCER, DISCHARGE REFRIGERANT PRESSURE, CIRCUIT 2	SENSOR, DISCHARGE REFRIGERANT TEMPERATURE, CIRCUIT 2 MOTOR: COMPRESSOR 24. CIRCUIT 2	ELECTRONIC PROTECTION MODULE, COMPRESSOR 2A, CIRCUIT 2 HEATER CAMPRESSOR MODULE, COMPRESSOR 2A, CIRCUIT 2	MOTOR, COMPRESSOR 28, CIRCUIT 2	ELECTRONIC PROLECTION MOUDLE, COMPRESSOR 28, CIRCUIT 2 HEATER, COMPRESSOR 28, CIRCUIT 2		MOTOR, FAN 1, CIRCUIT 2	MOTOR, FAN, CIRCUIT 2		MOTOR, FAN, CIRCUIT 2 Juint papereniae mitrour emerine a	HIGH PRESSURE CUIDUL SWITCH, CIRCUIT 2 EXPANSION VALVE, COOLING, CIRCUIT 2				SENSOR, EVAPORATOR LEAVING WATER TEMPERATURE SENSOR, EVAPORATOR ENTERING WATER TEMPERATURE	SENSOR, AMBIENT TEMPERATURE SENSOR, WATER FLOW	SENSOR, HEAT RECOVERY ENTERING WATER TEMP SENSOR, HEAT RECOVERY LEAVING WATER TEMP	HEATER, EVAPORATOR JUGATED BILIEED TANK	HEATER, DOT EN INNI HEATER, PUMP PACKAGE	HEATER, WATER PUMP PIPING HEATER, WATER PUMP PIPING	HEATER, EXPANSION TANK HEATER, BUFFER TANK	HEATER, PARTAL HEAT RECOVERY	HEATER, PARTIAL HEAT RECOVERY HEATER, BUFFER TANK	HEATER, BUFFER TANK HEATER BIJFFER TANK PIPING	HEATER, WATER PUMP PACKAGE			BLUCK TERMINAL - EVAPORATUR AND WATER PIPE HEATERS BLOCK TERMINAL - PUMP PACKAGE HEATERS
LOCATION CODE DOCTION CODE UXILIARY PANEL UXILIARY PANEL 4 CIRCUIT 2 4 CIRCUIT 2 0 VIDED		DEVICE	381 382				3M2A1 3M2E1		5M5	3M5		3M9	3S1 3Y1						4M1A1				4M4	4M5		4M9 451	471				581 582				5E3 6E4 EFE	_			5E11 5E12					5X2
DEVICE PRETX LOCATION CODE AMM PNLL LOCATION T MM PNLL LOCATION T MM PNLL PAILE 1 MM PNLL PAILE 2 NOT USED 3 REPRESENTION FEEDUT 2 4 REPRESENTION FEEDUT 2 5 UNIT MONTED 5 UNIT MONTED		LINE NUMBER	1097	531	525	557	1050	1042	1088	1107	1025	113/ 599 OR 622	615 OR 688 1057	1065	1032					155	299 26	3	1126			38,39	96,99 28,29	30 27	85,86,87 26,27	156,171 300,314,328	317	226	371	•	535	555	529 527		195	5.		314 339	343	174 178
	LEGEND	DESCRIPTION		COMPRESSOR MOTOR CONTROL; QUAD RELAY OUTPUT	HIGH PRESSURE CUTOUT; DUAL HIGH VOLTAGE BINARY INPUT COMODESCOPE EALITE 2A JA 20 OLIAL HIGH VOLTAGE BINARY INDITE	COMPRESSOR FAULT, 24 & 25 UPAL HIGH VOLTAGE BINARY INFUT	CHILLED WATER PUMP CONTROL. DUAL RELAY OUTPUT	CHILLER WATER PUMP FAULT. DUAL LOW VOLTAGE BINARY INPUT	EXTERNAL EMERGENCY STOP/AUTO STOP, DUAL LOW VOLTAGE BINARY INPUT EXTERNAL CHILLER WATER SETRONAT DEVAND 24 INDE. AND OC INDERT/OLITERE	COMMUNICATION, LCI-C, DUAL LOW VOLTACE BINARY INPUT	CHILLER WATER FLOW AND INTERLOCKS, DUAL LOW VOLTAGE BINARY INPUT	UNI UPERAIMS STATUS, UNU RELAT UNIFUL CONDENSER FAN CONTROL CIRCUIT 1, QUAD RELAY OUTPUT	CONDENSER FAN CONTROL CIRCUIT 2, OUAD RELAY OUTPUT FAN INVERT FAULT INPUT, DUAL LOW VOLTAGE BINARY INPUT	FAN VSD CONIKOL, ANALOG INPUL/OUIPUL	PUMP VSD FREQUENCY, ANOLOG INPUT/OUTPUT OR % CAPACITY					VSD. CONDENSER FAN 1A, CIRCUIT 1	VSU, CONPENSIN FAN ZA, CIRCUIT Z RELAY, PHASE PROTECTION, CIRCUIT 1	KELAT, FRASE FRUIEUTION, CIRCUIT 2	BACNET COMMUNICATION INTERFACE FOR CHILLERS	HEATER, BLANKET, 1A36 HEATER, BLANKET, 1A36	HEATER, BLANKET, 1337	FUSE, COMPRESSOR HEATER, CIRCUIT 1	FUSE, CUMPRESSUR HEALER, CIRCULI 2 FUSE, CONTROL POWER TRANSFORMER, PRIMARY	FUSE, PHASE PROTECTION RELAY, CIRCUIT 1 FUSE, CONTROL, POWER, TRANSFORMER, SECONDARY, 115V	FUSE, PHASE PROTECTION RELAY, CIRCUIT 2 FUSE, CONTROL POWER TRANSFORMER, SECONDARY, 24V	FUSE, FAN 1A, CIRCUIT 1 FUSE, FAN 2A, CIRCUIT 2	RELAY, TWO SPEED FAN, OVERLOAD PROTECTION, CIRCUIT 1 RELAY, TWO SPEED FAN, OVERLOAD PROTECTION, CIRCUIT 2		FUSE, FANS CIRCUIT 1	FUSE, FANS CIRCUIT 2	CONTACTOR, COMPRESSOR 1A, CIRCUIT 1	CONTACTOR, COMPRESSOR 1B, CIRCUIT 1	CONTACTOR, COMPRESSOR 24, CIRCUIT 2 CONTACTOR, COMPRESSOR 28, CIRCUIT 2	CONTACTOR, FAN 3M4	CONTACTOR, FAN 3M9 CONTACTOR FAN 3M5			CONTACTOR, FAN 4M4 CONTACTOR, FAN 4M9	CONTACTOR, FAN 4M5	CONTACTOR, 2-SPEED FAN 3M4, LOW CONTACTOR, 2-SPEED FAN 3M4, HIGH
		DEVICE	1A1 1A2	1A3	1A5 1A6	147	149	1A12	1A13 1A14	1A15 1A16	1417	1419	1A20	1A22	1A25					1A36	1A3/ 1A38	ACA1	1A41	1E1 1F2	1E3	1F1,1F2 1F3 1F4	1F5,1F6	1F7 1F11	1F12-1F13	1F14-1F16 1F17-1F19	1F20 1F21		1F38-1F40	1F44-1F46	1K1	1K2	1K4 1K5	147	1K9			1K13	1K15	1K19 1K20

40-70 Ton - "V Frame" - Device Designators

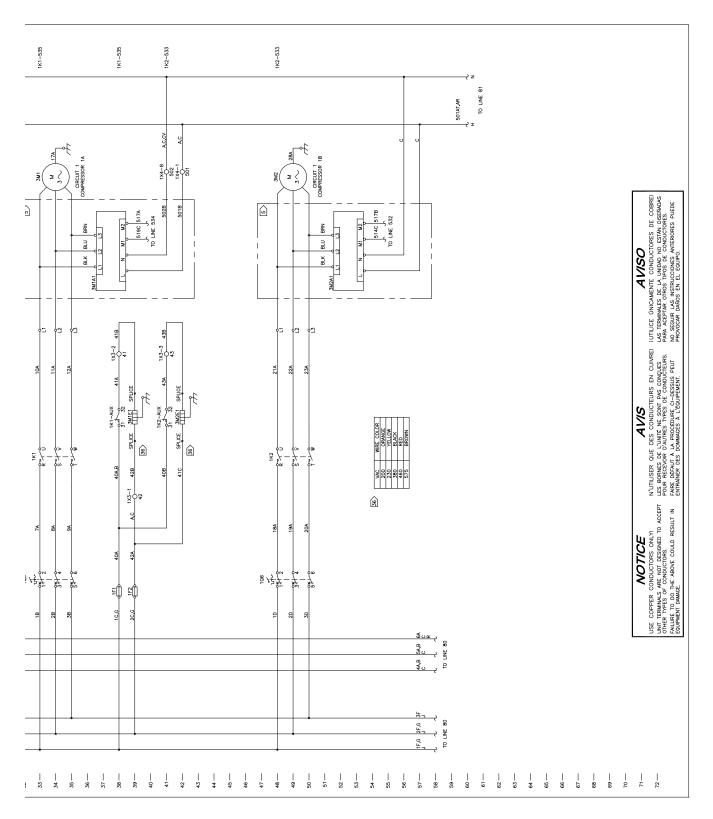
1194 1122,1175 1188 1188 1188 1203 1182 1179 1182 1203 1203 1191	Wettss We
 35.3 HARNER, MULER FUND PROCKER 54.555 HARNER, MULER FUND PROCKER 55.8 HARNER, DENRISON TANK 55.9 HARNER, DENRISON TANK 56.1 HARNER, DENRISON TANK 56.2 HARNER, DENRISON TANK 56.3 HARNER, DENRISON TANK 	SI BOOK TERMINAL - EVAPORITOR AND WITER PRE HEATERS SI BOOK TERMINAL - BUFFER INAM - EVAPORITOR AND WITER PRE HEATERS SI.1.2.3 BLOKK TERMINAL - BUFFER INAM - HEATERS SI.1.2.3 TERMOSTAL - BUFFER INAM - HEATERS SI.1.2.1 TERMOSTAL - BUFFER INAM - HEATERS SI.1.2.2 ELAX - USTOWER PROVEED, OFFLIOND - PROFED ONLING EVI ELAX - USTOWER PROVEED, OFFLIOND - FORTEONLING EVI ELAX - USTOWER PROVED, OFFLIOND - FORTEONLING EVI ELAX - USTOWER PROVED EVI ELAX - USTOWER SUPPERD - PARSE - CONTEON - EVICTOR EVIC ELAX - USTOWER SUPPERD - PARSE - CONTEON - EVICEND EVIC EVIC
555 552 553 553 553 553 553 553 553 554 554 555 555	114 1134 119 119 119 119 119 119 119 119 119 119 111 119 111 111 1111 111 1111
CONTACTOR, COMPRESSIE IS, DROUTT 1 CONTACTOR, COMPRESSIE IS, CRECUTT 1 CONTACTOR, COMPRESSIE 28, CRECUTT 2 CONTACTOR, TAN 3M9 CONTACTOR, FAN 3M9	CONTACTOR, 2-SFEED FAN, 3MA, LOW CONTACTOR, 2-SFEED FAN, 3MA, LOW CONTACTOR, 2-SFEED FAN, 4MA, HIGH CONTACTOR, 2-SFEED FAN, 4MA, HIGH CONTACTOR, 2-SFEED FAN, 4MA, HIGH CONTACTOR, 2-SFEED FAN, 4MA, HIGH FAN, MAN CONTROL FANT, CONTACTOR CONTACTOR FANT, ANN CONTROL FANT, CONTACTOR FANT, ANN CONTROL FANT, CONTACTOR FEBORE, FOWRE DETRIBUTION, CIFCOUT 1 CIFCOUT 2 CIFCOUT BEEAGER, FOWRE DETRIBUTION, CIFCOUT 2 CIFCOUT BEEAGER, FOWRE DETRIBUTION, CIFCOUT 2 CIFCOUT 2 CIFCOUT BEEAGER, FOWRE DETRIBUTION, CIFCOUT 1 CIFCOUT 2 CIFCOUT BEEAGER, COMPRESSOR, CIFCOUT 1 MANUAL WOTOR STRATER, FAN 3MS, CIFCOUT 2 MANUAL WOTOR STRATER, FAN 3MS, CIFCOUT 2 MANUAL WOTOR STRATER, FAN 3MS, CIFCOUT 1 MANUAL WOTOR STRATER, FAN 3MS, CIFCOUT 2 MANUAL WOTOR

40-70 Ton - "V Frame" - Notes

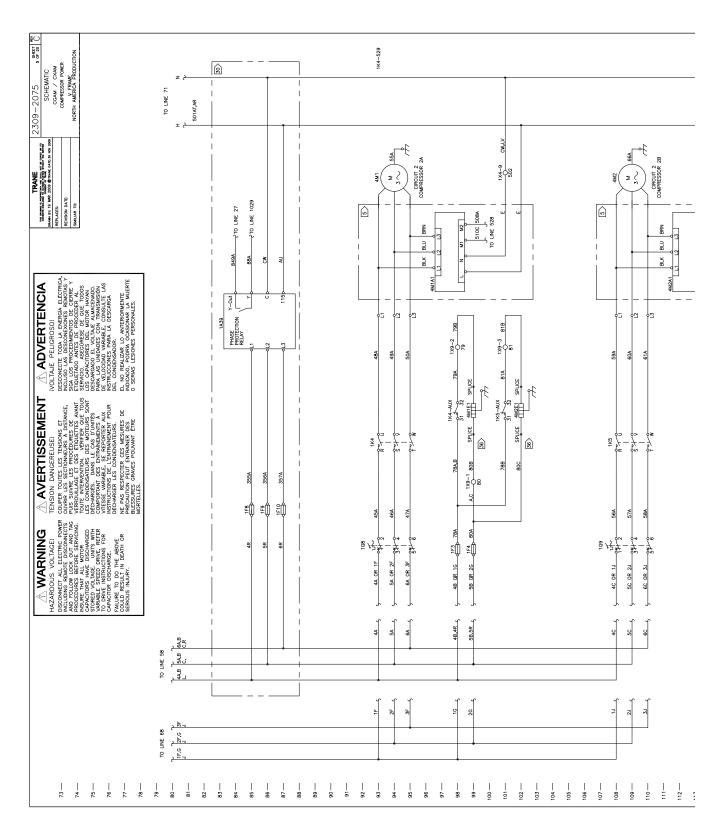
	 And and include and an end of the contraction on the network in which include and of the method in the project include and includ
CENERAL NOTE: 1. LIALES OFFERAL NOTE: 1. LIALES OFFERALE NOTE: 2. DAGED INFE FRUCARE RECORDENT MENA 2. DAGED INFE FRUCARE RECORDENT MENA 3. LIAL FELD WARE RECORDENT RECORD	


40-70 Ton - "V Frame" - Notes

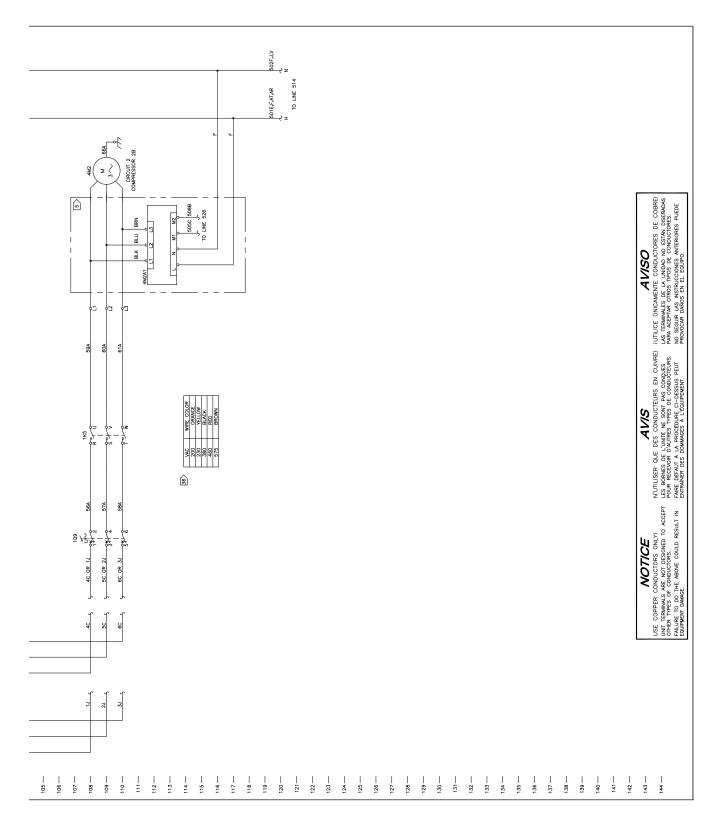
PLUE CONTROL CONFIGURATION SHOWS WITH CONTACTORS AND OVERLOAD RELIXS, PUMPES) CAN ALSO BE POWERED BY OLSTOMER CONFIGULED YOR(S). PUMP STARTER FAULT SIGNAL(S) TO BE FIELD WIED TO 1A/2 (NSET "AX"). (IS) OLSTOMER SUPPLIED PUMP RUN SIGNAL TO BE FIELD WIED TO 1A/2	WINNE FOR 2007/4604 UNIT SHOWN. SEE INSET "B" FOR CONTROL POWER TRANSFORMER WINNE OF OTHER VOLTAGES. (B) CONTACT CLOSURE EWABLES ICE MAKING, WHEN ICE MAKING OFTION IS ORDERED. (EN.1=ICE)	[2] CLASS 1 FIED WRED WOOUE. [22] RELAY AT 12000: 72 AMPS RESSIRE, 2.88 AMPS PLOT DUTY, 1/3 HP 7.2 FLAY AT 2400MC: 5 AMPS GENERAL PURPOSE. [33] RELAY AT 12000: 72 AMPS RESSIRE, 2.88 AMPS PLOT DUTY, 1/3 HP 7.2 FLAY AT 2400MC: 5 AMPS GENERAL PURPOSE.	122) FIELD ASSIMPTED PROGRAMMERE RELATES SALEPHELT. 123: OLISTOMER SUPPLIED PROMER, 120Y FOR NAMMER AND PACIFIC PAM. 123: ONLY USED WHEN PARVICLE PAMIN SO REDERED. (PTMP=DSNP OR DHHP)	(B) THE CONTACTS FOR AUTO STOP AND EMERGENCY STOP SWITCHES ARE JUMPERED AT THE FACTORY BY JUMPERS W2 & W3 TO ENVIRE UNIT OPERATION. IF REMOTE CONTROL, IS DESIRED, REMOVE THE JUMPERS AND CONNECT TO THE DESIRED CONTROL, CHACUT.	(50) PHASE PROTECTION RELAY USED ONLY FOR CIRCUT(S) WITH 10 TON AND 13 TON COMPRESSORS (NTON = 20, 26, 40 or 52). (31) NOT PRESENT WHEN BOTH OF THE COMPRESSORS ARE LESS THAN 15 TON (NTON = 20, 26, 40 or 52). (32) GROUND SCREW IN MAIN CONTROL PARE. (33) WHEN PUMP YSD IS PRESENT (PCON = YSD) PUMP CONTROLORS (5K1/5K2) ARE INSIDE THE PUMP YSD AUXILIARY PANEL.	$\frac{1}{1000} FUSES 1F44, 1F46, 1F46 PRESENT ON ALL V (NTON = 40, 52, 60 or 70) CONFIGURATIONS. PRESENTFOR W (NTON = 60, 90, 100, 110, 120 or 130) CONFIGURATION WHEN LINE VOLTAGE IS (NOLT = 575).\frac{1}{1000} V USATILITION FAN PRESENT WHEN LINE (NOLT = 200, 2304AC, 380 or 400).$	(S) THAT, BLANETINTERFACE MODULE USED WHEN FAN VED IS PRESENT (UMPP-LATC OR MOC) THERMOSTAT FOR VED HEATER BLANKETS. USED WHEN FAN VED IS PRESENT (UMPP-LATC OR MOC)
_ E			U				


Unit Wiring

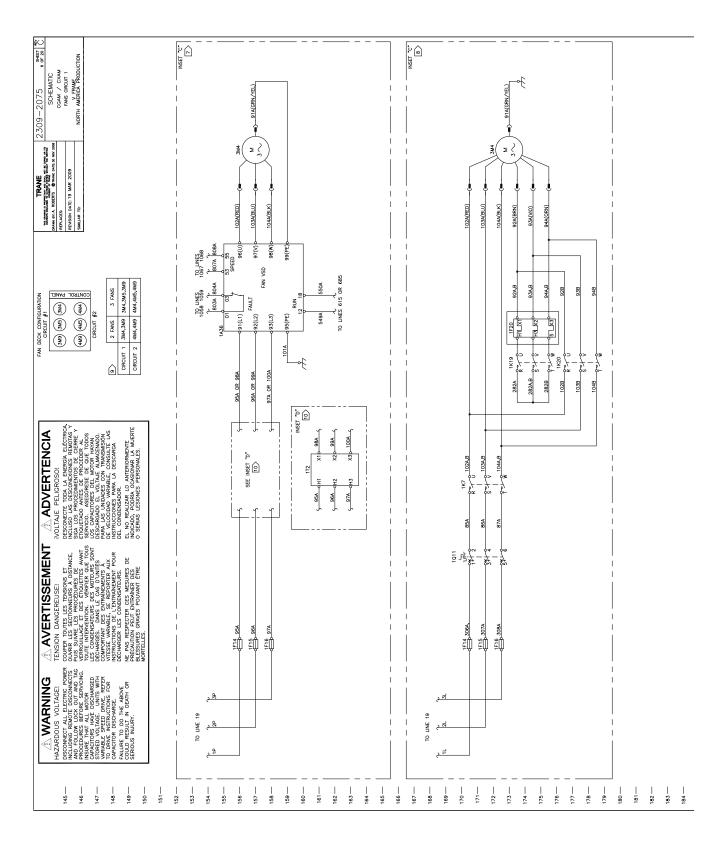
40-70 Ton - "V Frame" - Compressor Power

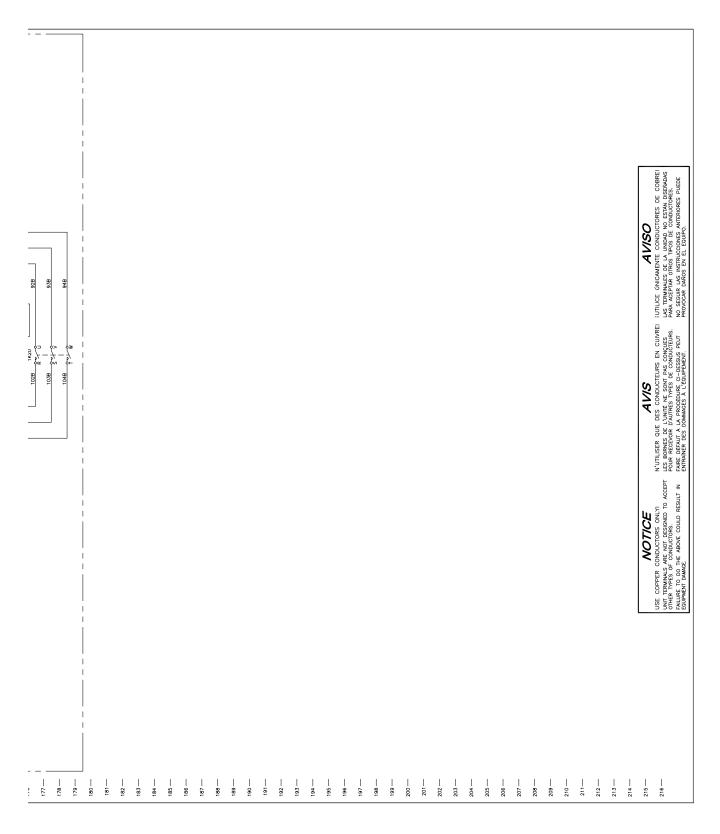


40-70 Ton - "V Frame" - Compressor Power

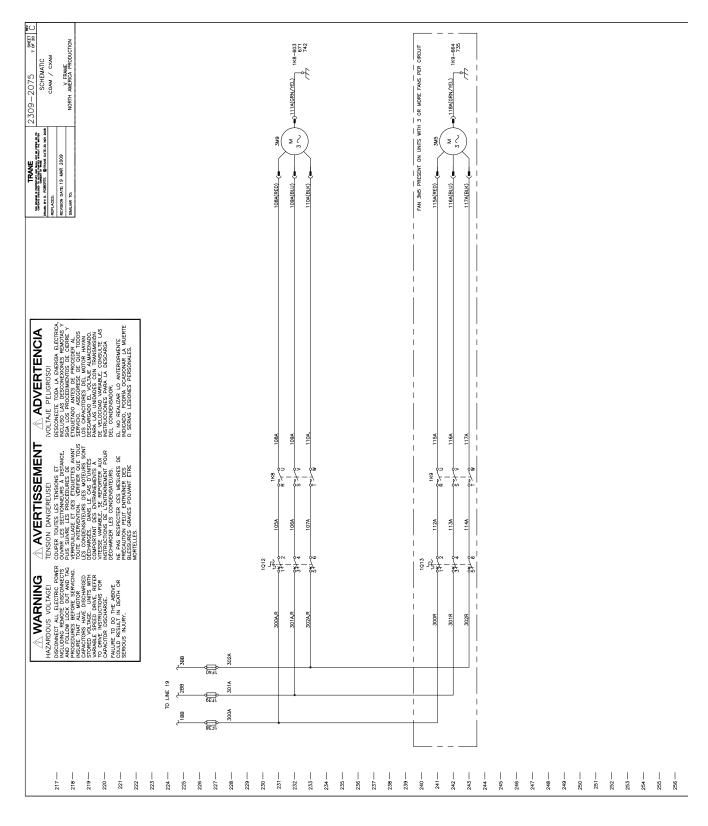


40-70 Ton - "V Frame" - Compressor Power continued

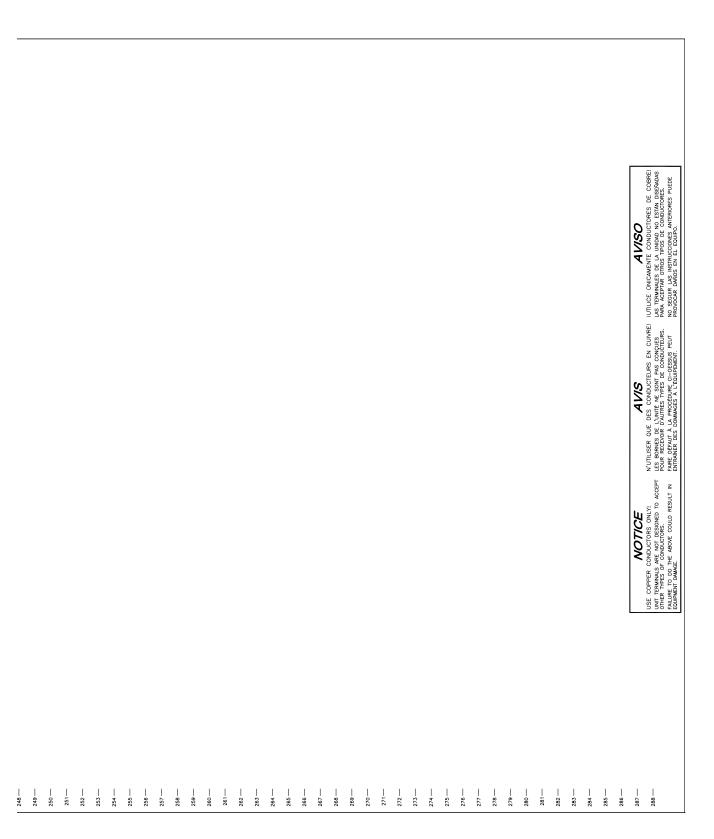

40-70 Ton - "V Frame" - Compressor Power continued


Unit Wiring

40-70 Ton - "V Frame" - Fans Circuit 1

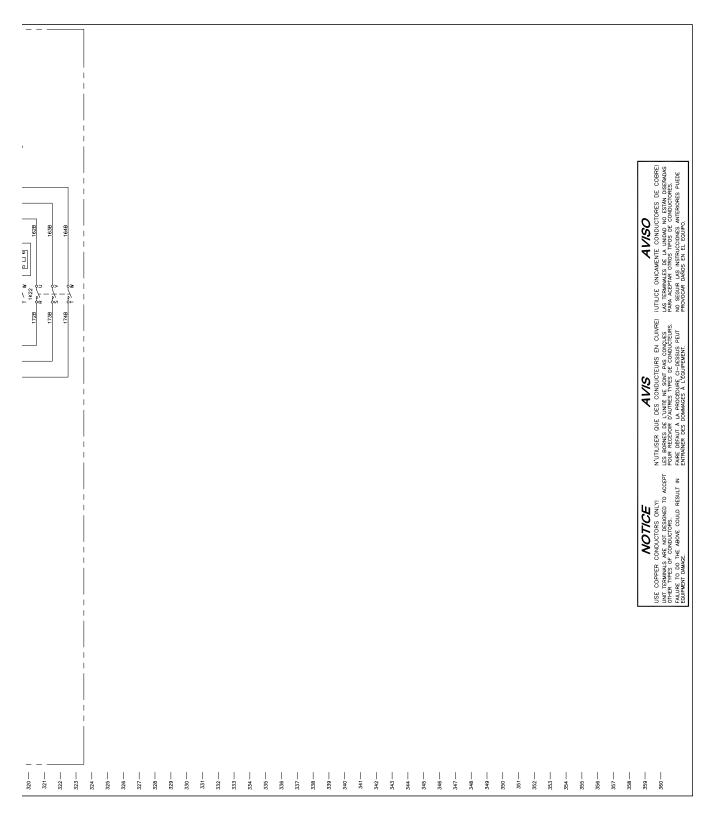


40-70 Ton - "V Frame" - Fans Circuit 1

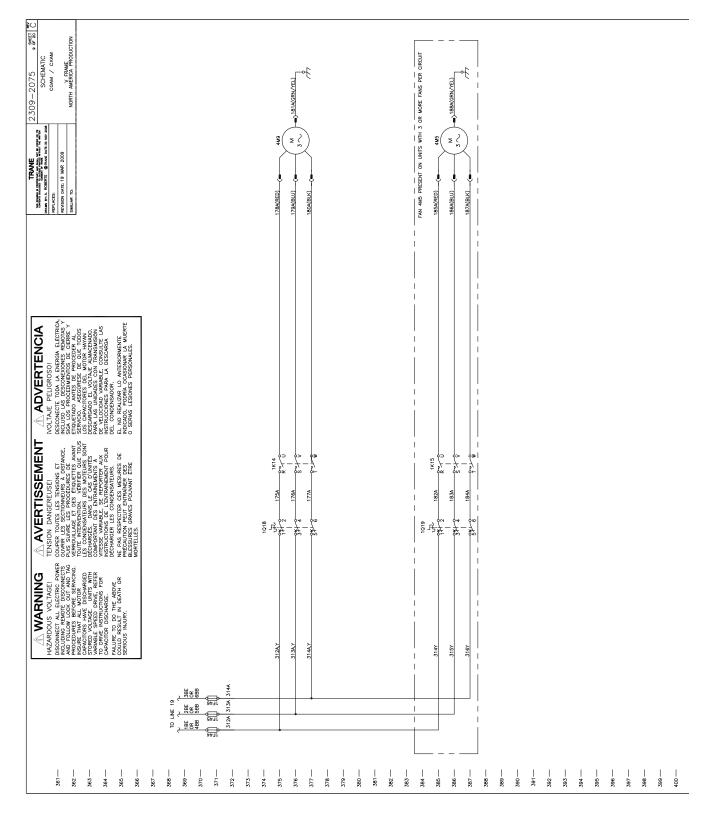


40-70 Ton - "V Frame" - Fans Circuit 1 continued

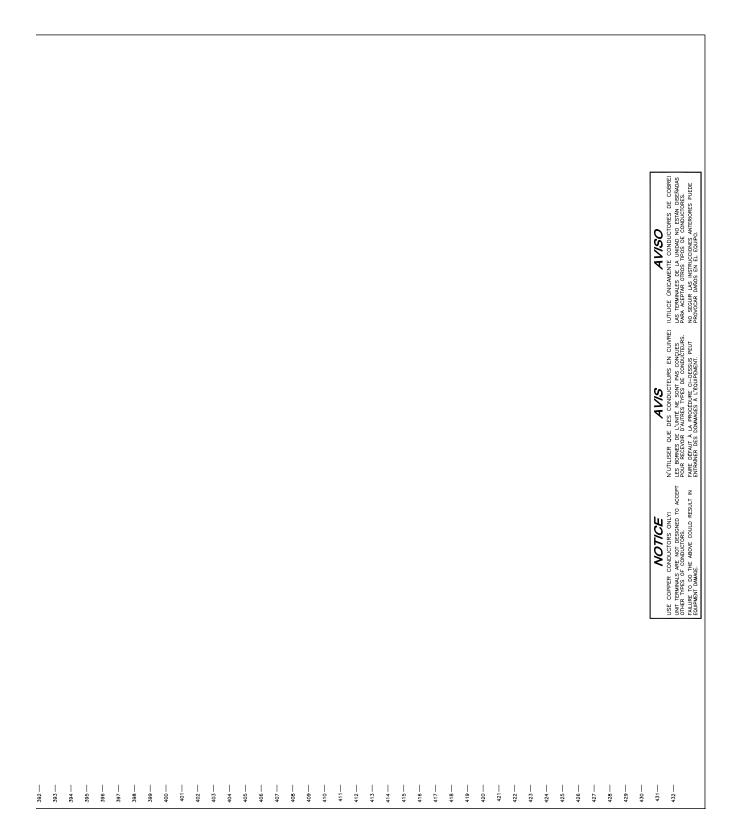
40-70 Ton - "V Frame" - Fans Circuit 1 continued


Unit Wiring

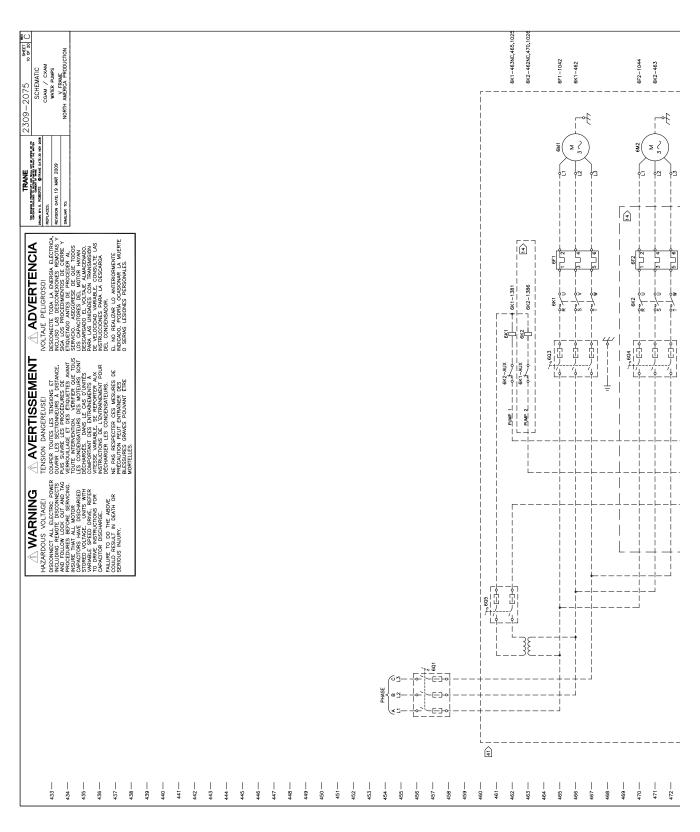
40-70 Ton - "V Frame" - Fans Circuit 2



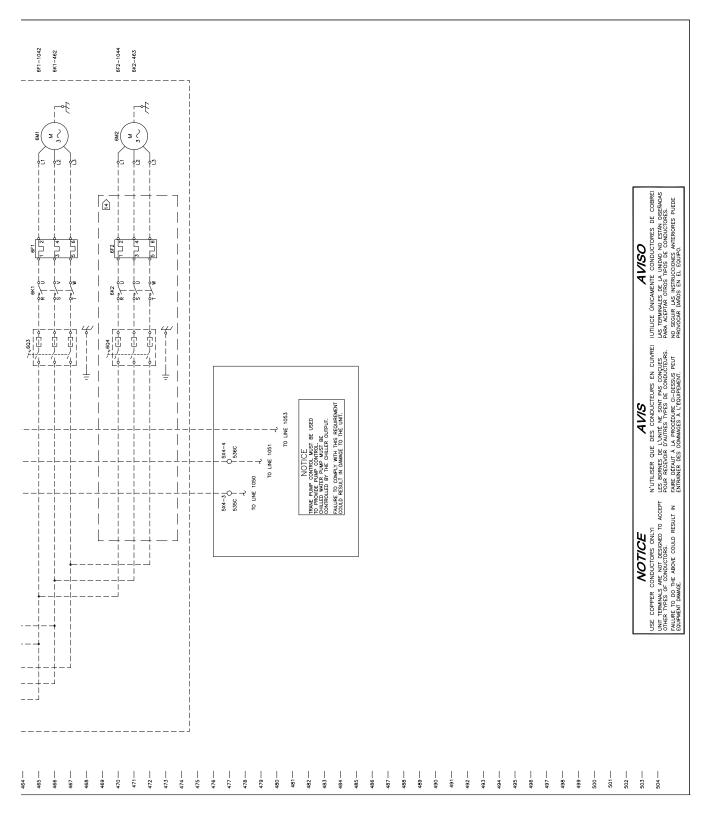
40-70 Ton - "V Frame" - Fans Circuit 2



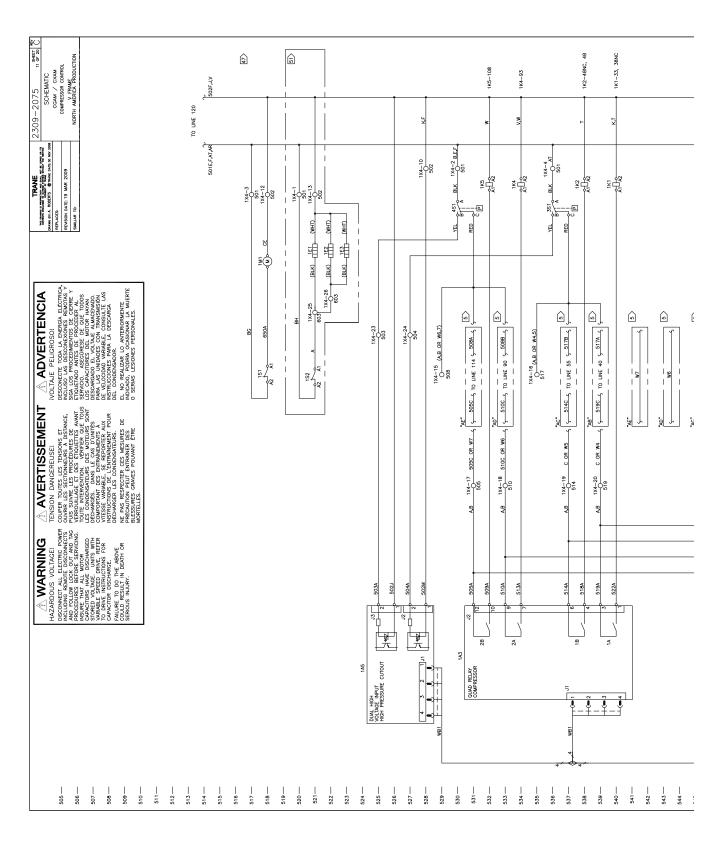
40-70 Ton - "V Frame" - Fans Circuit 2 continued



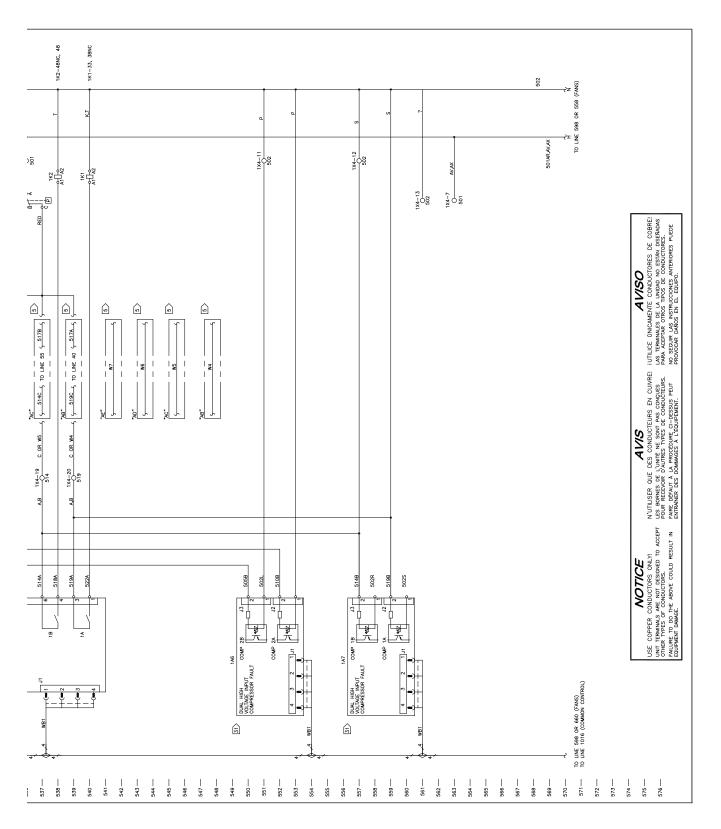
40-70 Ton - "V Frame" - Fans Circuit 2 continued



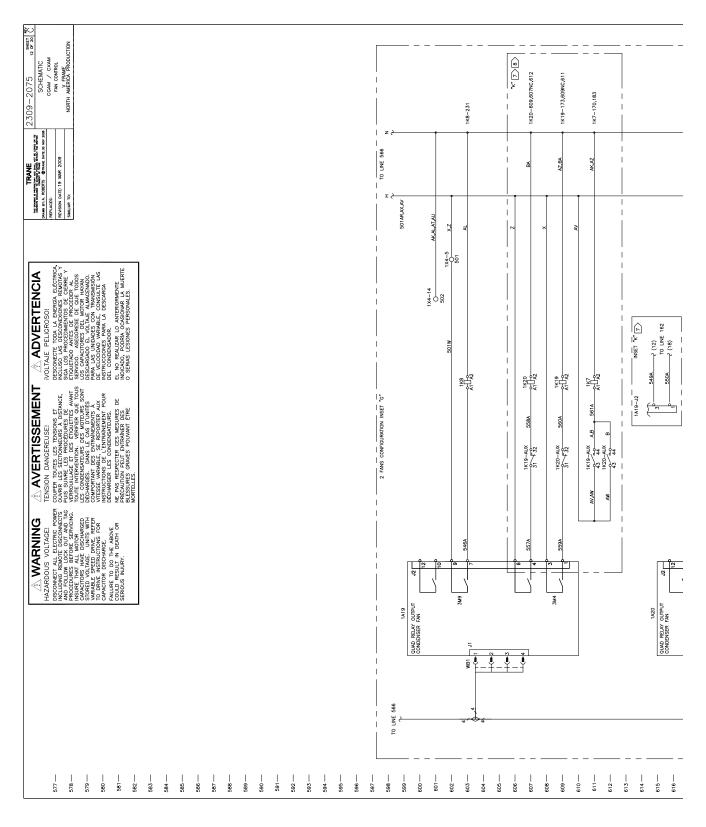
40-70 Ton - "V Frame" - Water Pumps



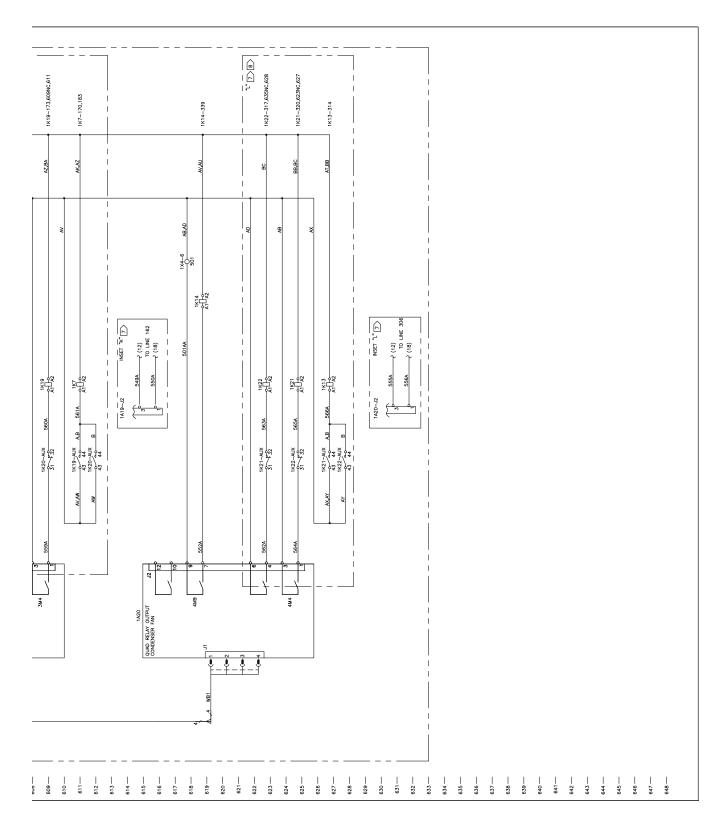
40-70 Ton - "V Frame" - Water Pumps



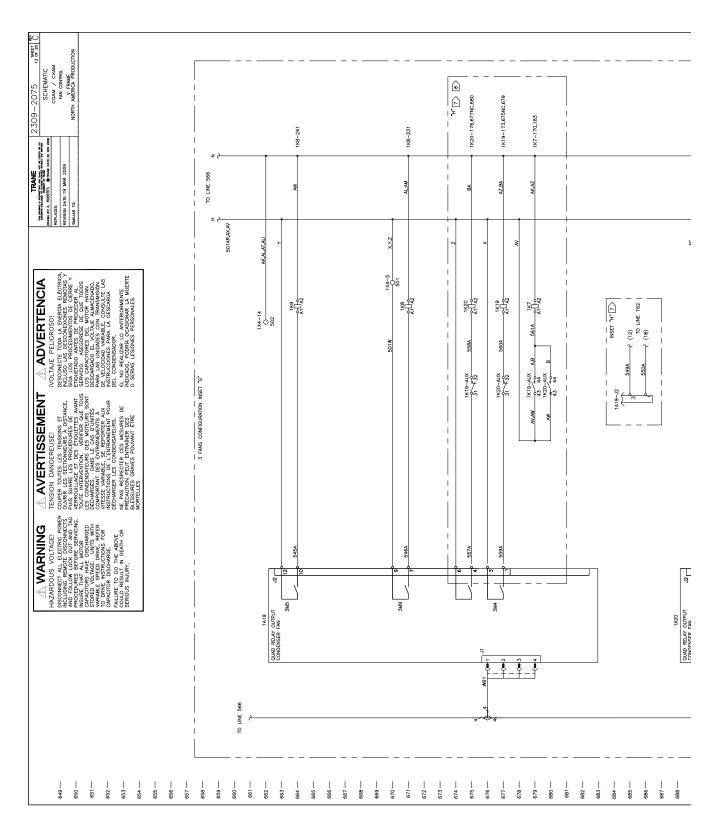
40-70 Ton - "V Frame" - Compressor Control



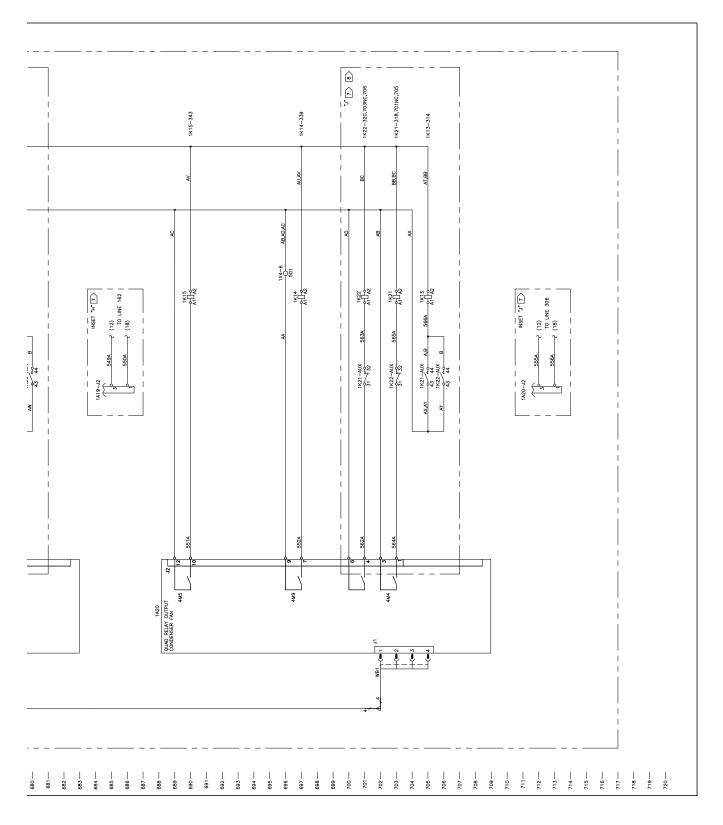
40-70 Ton - "V Frame" - Compressor Control



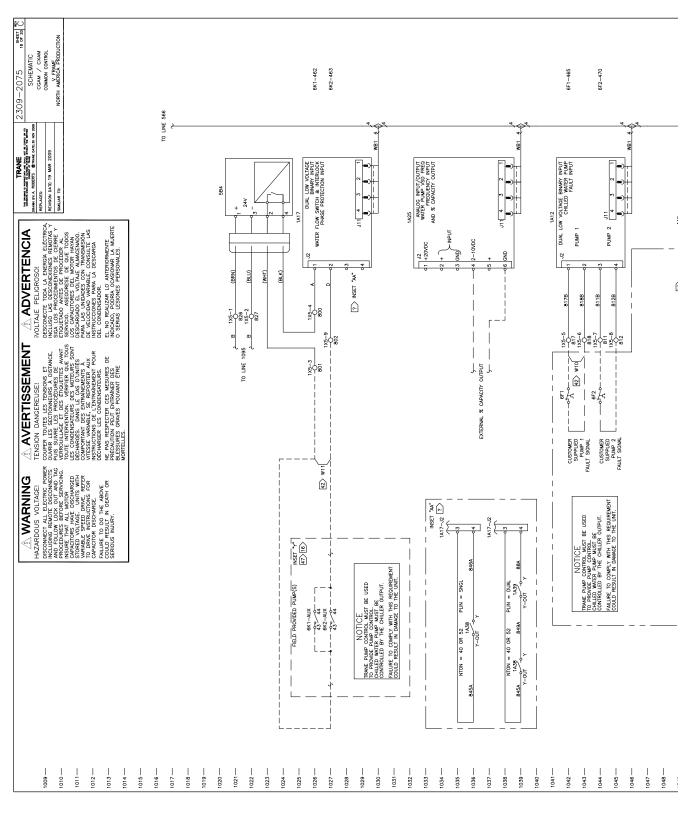
40-70 Ton - "V Frame" - Fan Control



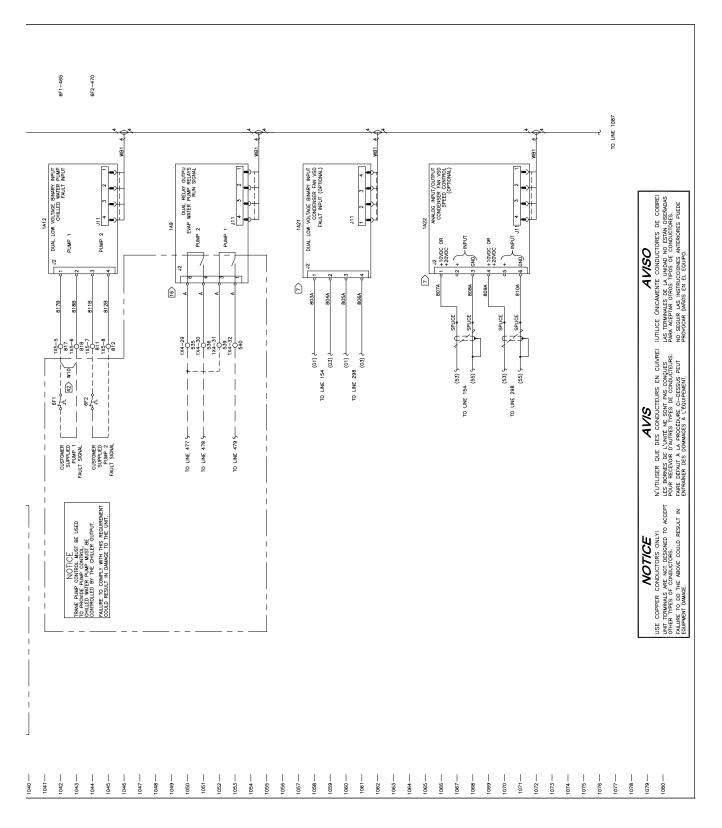
40-70 Ton - "V Frame" - Fan Control



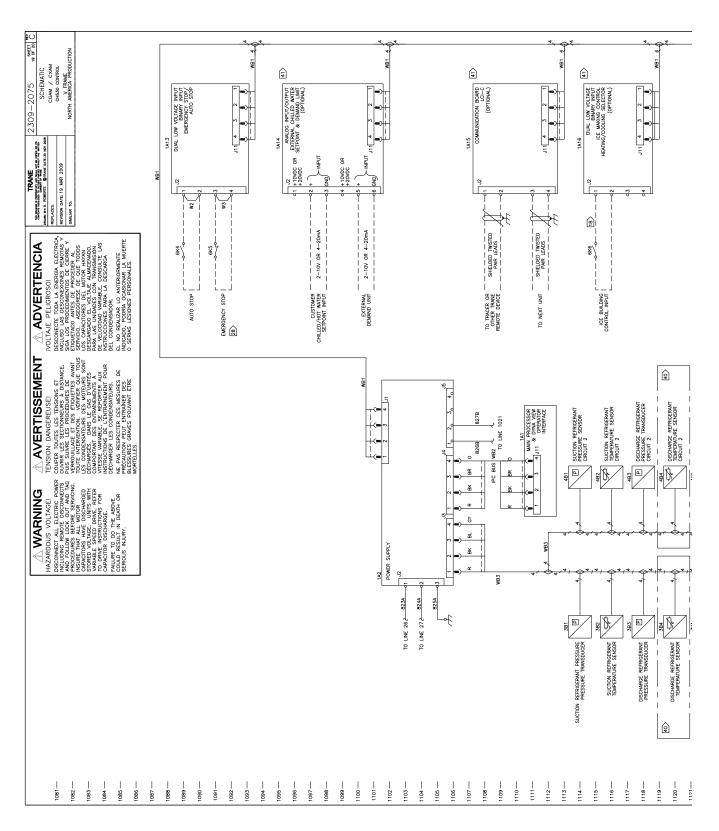
40-70 Ton - "V Frame" - Fan Control continued



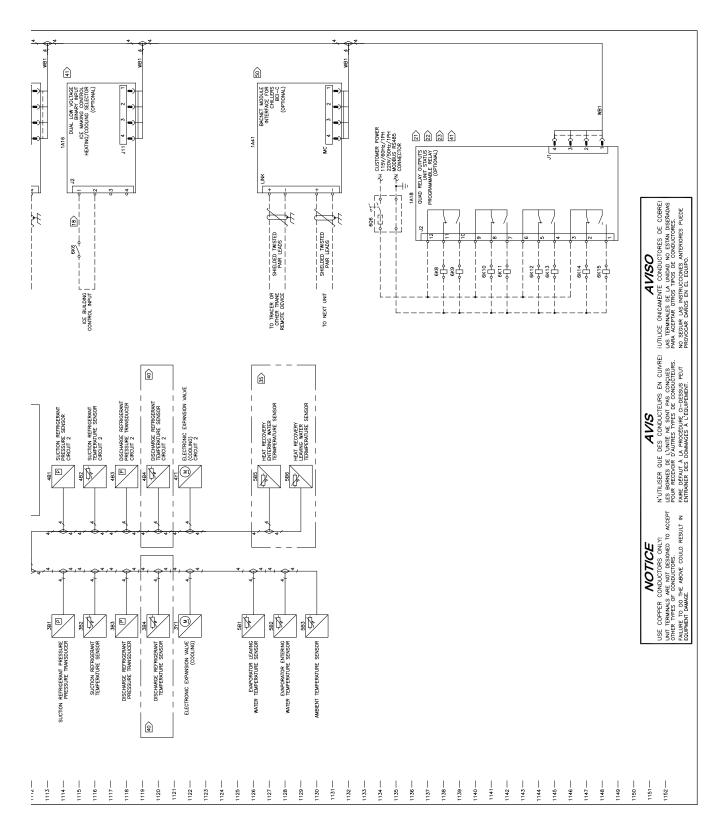
40-70 Ton - "V Frame" - Fan Control continued



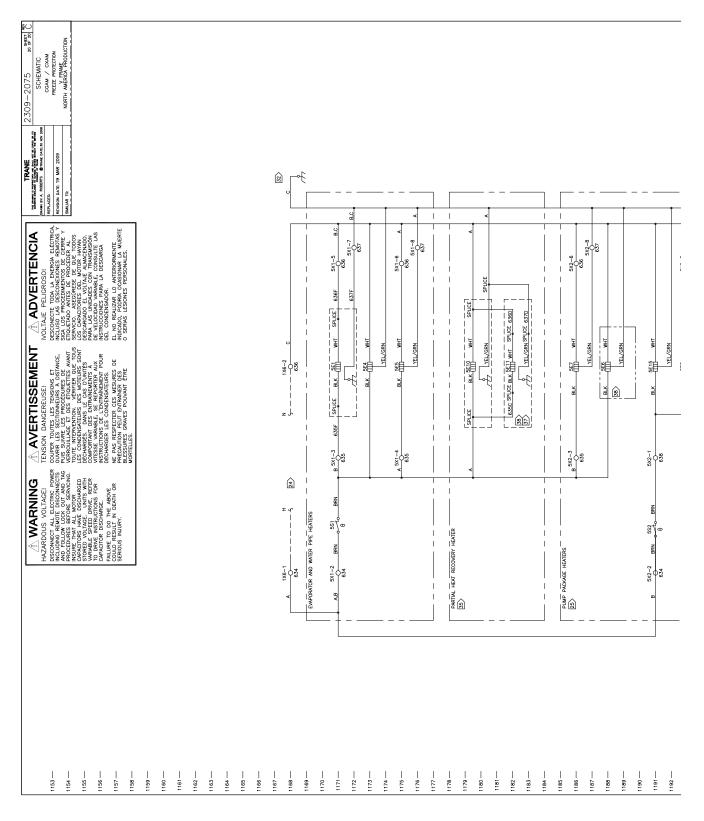
40-70 Ton - "V Frame" - Common Control



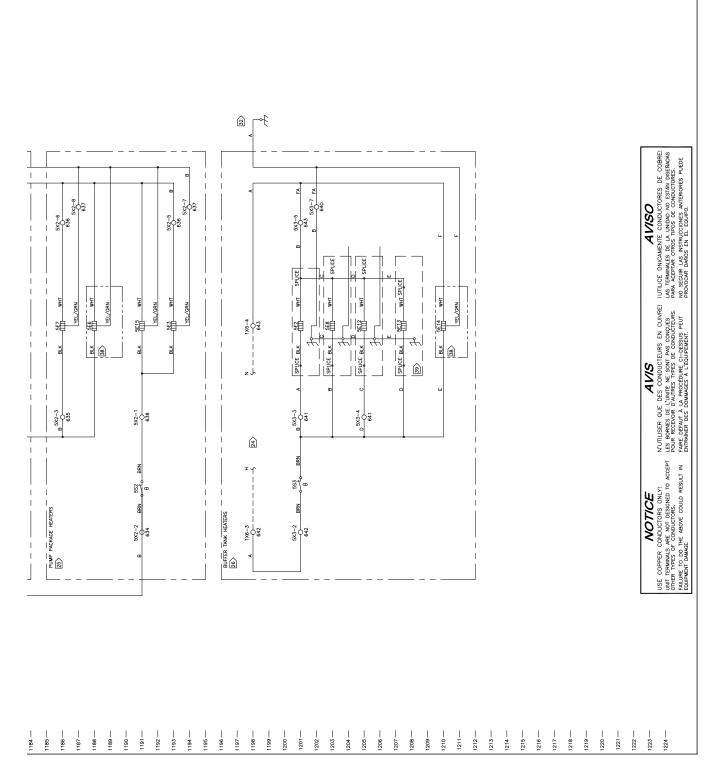
40-70 Ton - "V Frame" - Common Control



40-70 Ton - "V Frame" - CH530 Control

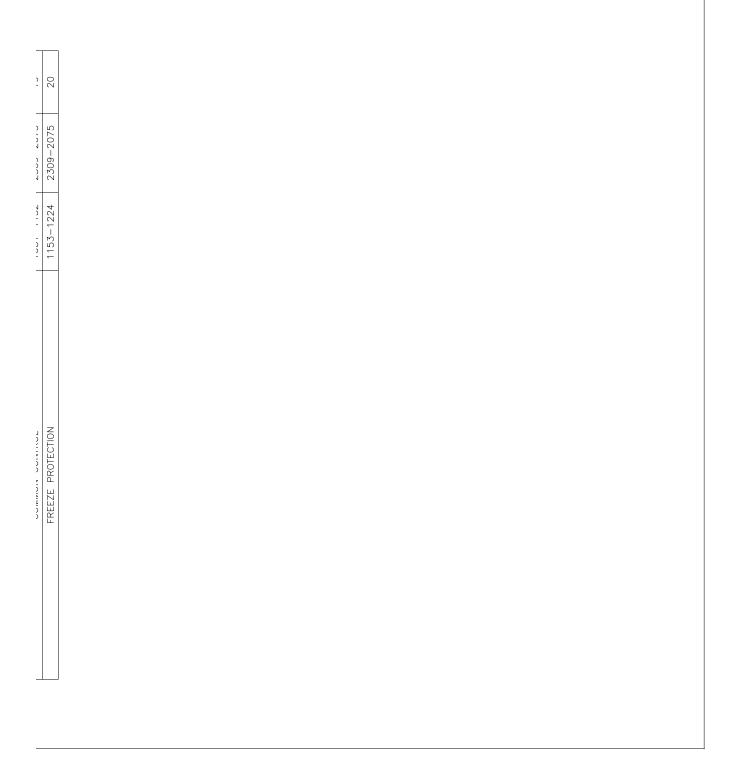


40-70 Ton - "V Frame" - CH530 Control



40-70 Ton - "V Frame" - Freeze Protection

40-70 Ton - "V Frame" - Freeze Protection



80-120 Ton - "W Frame" - Table of Contents

COMPANY SCHWATC COM / CAMPANY NAME OF CAMPANY NORTH AMERICA PRODUCTION			SHEET	~	2	3	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20
course in A Restrict Sector Parks on the Resurverses on the 19 MAP 2009 Sectors on the 19 MAP 2009 Sectors for the 2009 Sectors of			DRAWING NUMBER	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075	2309-2075
	NOIT		LINE NUMBERS	NA	NA	NA	1-72	73-144	145-216	217-288	289–360	361-432	433-504	505-576	577-648	649-720	721-792	793-865	866-936	937-1008	1009-1080	1081-1152	1153-1224
	NORTH AMERICA PRODUCTION W FRAME	TABLE OF CONTENTS	TITLE	TABLE OF CONTENTS	IEGEND	NOTES	COMPRESSOR POWER CIRCUIT 1	COMPRESSOR POWER CIRCUIT 2	FAN POWER CIRCUIT 1	FAN POWER CIRCUIT 1	FAN POWER CIRCUIT 2	FAN POWER CIRCUIT 2	PUMP POWER	COMPRESSOR CONTROL	FAN CONTROL, 2 FAN UNITS	FAN CONTROL, 3 FAN UNITS	FAN CONTROL, 4 FAN UNITS	FAN CONTROL, 5 FAN UNITS	FAN CONTROL, 6 FAN UNITS	PUMP CONTROL	COMMON CONTROL	COMMON CONTROL	FREEZE PROTECTION

80-120 Ton - "W Frame" - Table of Contents

80-120 Ton - "W Frame" - Device Designators

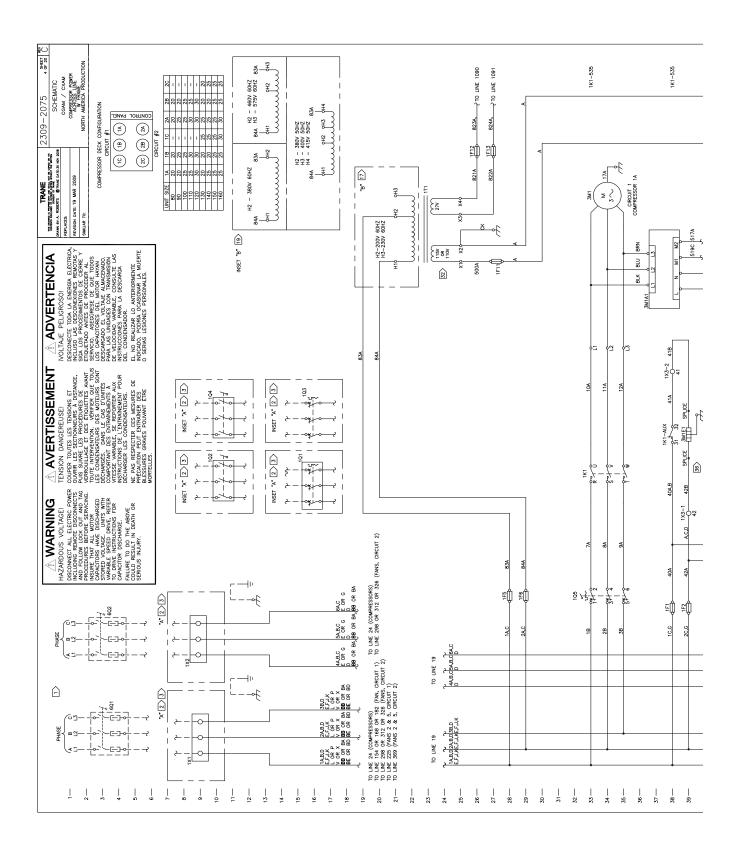
2309–2075 setter 10 Schedwick Communication Bank Estawindes North Auffick Production		LINE	1102	1104	1109	33	6 F	52	41	64 64	45 156,170,183	241	261	231	531 1112			1102 1104	1106	1109	96	108	112 102	120	105 300 314 330		347	339	525 1112				1117	1121	1117	1119 1171	1201 1193	1173,1175	1186	1203	1179	105	1208 1210	1191			VARIES VARIES VARIES	
TRANE TRANE TRANE TRANE TRANE TRANE TRANE TRANE TRANE TRANE	LEGEND	DESCRIPTION	ANSDUCER, SUCTION REFRIGERANT PRESSURE, CIRCUIT 1	ENSOR, SUCTION REFRIGERANT TEMPERATURE, CIRCUIT 1	WUULLER, UISCHARGE REFRIGERANT TEMPERATURE, CIRCUIT 1 ENSOR, DISCHARGE REFRIGERANT TEMPERATURE, CIRCUIT 1	OTOR, COMPRESSOR 1A, CIRCUIT 1	EXTER, COMPRESSOR 1A, CIRCUIT 1	OTOR, COMPRESSOR 18, CIRCUIT 1 FCTRONIC PROTECTION MODULE, COMPRESSOR 18, CIRCUIT 1	EATER, COMPRESSOR 1B, CIRCUIT 1	MULICA, CUMPRESSON IC, UNCULI I ELECTRONIC PROTECTION MODULE, COMPRESSOR IC, CIRCUIT 1	EATER, COMPRESSOR 1C, CIRCUIT 1 DTOR, FAN 1, CIRCUIT 1	OTOR, FAN, CIRCUIT 1	DUR, FAN, CIRCUIT 1	MOTOR, FAN, CIRCUIT 1	HIGH PRESSURE CUTOUT SWITCH, CIRCUIT 1 EXPANSION VALVE, COOLING, CIRCUIT 1			ANDUCER, SUCTION REFRIGERANT PRESSURE, CIRCUIT 2 NSOR SUCTION REFRIGERANT TRUPERATURE CIRCUIT 2	ANDUCER, DISCHARGE REFRIGERANT PRESSURE, CIRCUIT 2	ENSOR, DISCHARGE REFRIGERANT TEMPERATURE, CIRCUIT 2 DIOR. COMPRESSOR 2A. CIRCUIT 2	ECTRONIC PROTECTION MODULE, COMPRESSOR 24, CIRCUIT 2	OTOR, COMPRESSOR 2B, CIRCUIT 2	ECTRONIC PROJECTION MODULE, COMPRESSOR 2B, CIRCUIT 2 EATER, COMPRESSOR 2B, CIRCUIT 2	DTOR, COMPRESSOR 2C, CIRCUIT 2 ECTRONIC PROTECTION MODULE, COMPRESSOR 2C, CIRCUIT 2	ZATER, COMPRESSOR 2C, CIRCUIT 2	DTOR, FAN, CIRCUIT 2	MUICK, FAN, CIRCUIT 2 MOTOR, FAN, CIRCUIT 2	0TOR, FAN, CIRCUIT 2	HIGH PRESSURE CUTOUT SWITCH, CIRCUIT 2 EXPANSION VALVE, COOLING, CIRCUIT 2				SENSOR, EVAPORATOR LEAVING WATER TEMPERATURE SENSOR EVAPORATOR ENTERING WATER TEMPERATURE	ENSOR, AMBIENT TEMPERATURE	ENSOR, HEAT RECOVERY ENTERING WATER TEMP	ENSOR, HEAT RECOVERY LEAVING WATER TEMP EATER, EVAPORATOR	EATER, BUFFER TANK EATER, WATER PUMP PACKAGE	EATER, EVAPORATOR PIPING	ANTER, WALER FUMP PIPING EATER, EXPANSION TANK	EATER, BUFFER TANK	CATER, PARTAL HEAT RECOVERY	ALER, FARIAL FICAL REUVERI EATER, BUFFER TANK	HEATER, BUFFER TANK HEATER, BUFFER TANK PIPING	EATER, WATER PUMP PACKAGE			BLOCK TERMINAL – EVAPORATOR HALTER PIE HEATERS LOCK TERMINAL – PUNPCKAGE HALTERS BLOCK TERMINAL – BUFFER TANK HALTERS	
ION CODE ON CODE ARY PANEL CUIT 1 CUIT 2 CUIT 2		DEVICE	381 15							3M3A1 EI					3S1 H										4M3E1 H				4S1 4Y1 E							5B6 SI 5E1 H		0					5E13 H 5E14 H				5X1 BI 5X2 BI 5X3 BI	-
PENGE PREFX LOCATION CODE RMED I COLATION CODE 1 MMR PMEL/JUJULINE PMEL 2 MT USD 3 RETREGENTION CRCUT 1 4 RETREGENTION CRCUT 2 5 UNIT WOUNED 6 OLUSTOWER PROVIDED		UNE	1097	1101	544	525	557	564		1042	1088	1107	1025	599 OR 622 OR 733 OR 805	OR 688 OR 761 1057	1065	1032					155	667		1126			38,39	98,99 28,29	27	26.27	156171	173		220 237	371 381	535	533	542 529	527 540		195	203	415	339	343 347	 174 178 317	_
	regend	DENCE DESCRIPTION	1A1 DYNAVIEW MAIN PROCESSOR MODULE		1A2 COMPRESSOR MOTOR CONTROL, UNA RELAT UNITOL 1A4 COMPRESSOR MOTOR CONTROL, DUAL RELAY OUTPUT	HIGH PRESSURE CUTOUT; DUAL HIGH VOLTAGE BINAR	COMPRESSOR FAULT, 24 & 25, UML TICH VOLTAGE COMPRESSOR FAULT, 14 & 18, DUAL HIGH VOLTAGE	1A8 COMPRESSOR FAULT, 2C & 1C, DUAL HICH VOLTAGE BINARY INPUT 1A9 CHILLED WATER PLIMP CONTROL: DIJA RELAY OUTPUT					11		1420 CONDENSER FAN CONTROL CIRCUIT 2, QUAD RELAY OUTPUT 1421 FAN INVERT FAULT INPUT, DUAL LOW VOLTAGE BINARY INPUT		1225 POMP VSU FREQUENCY, ANOLOG INPUL/UDIPUL OK & CAPACITY					1A36 VSD, CONDENSER FAN 1A, CIRCUIT 1			1441 BACNET COMMUNICATION INTERFACE FOR CHILLERS		1EZ IHEARER, BLANKEL, 1A35 1E3 HEATER, BLANKET, 1A37	1F1.1F2 FUSE, COMPRESSOR HEATER, CIRCUIT 1	153.1F4 FUSE. COMPRESSOR HEATER, CIRCUIT 2 1F5.1F6 FUSE. CONTROL POWER TRANSFORMER, PRIMARY	1F11 FUSE, CONTROL POWER TRANSFORMER, SECONDARY, 115V	FLISE CONTROL POWER TRANSFORMER SECONDARY	FUSE FAN 1A, CIRCUIT 1 FUSE FAN 1A, CIRCUIT 1	112 IL OL LOGI TAV SPEED FAN, OVERLOAD PROTECTION, CIRCUIT 1 1520 RELAY, TWO SPEED FAN, OVERLOAD PROTECTION, CIRCUIT 1		1539-1537 FUSE, FANS CIRCUIT 1 1538-1540 FUSE, FANS CIRCUIT 1	1F41-1F43 FUSE, FANS CIRCUIT 2 1F44-1F46 FUSE, FANS CIRCUIT 2	1K1 CONTACTOR COMPRESSOR 1A. CIRCUIT 1		1K3 CONTACTOR, COMPRESSOR 1C, CIRCUIT 1 1K4 CONTACTOR, COMPRESSOR 2A, CIRCUIT 2				1K10 CONTACTOR, FAN 3M7 1K11 CONTACTOR, FAN 3M6			1K15 CONTACTOR, FAN 4M5 1K16 CONTACTOR, FAN 4M7 1K10 CONTACTOR, FAN 4M7	1K19 CONTACTOR, 2-SPEED FAN JAA, LOW 1K20 CONTACTOR, 2-SPEED 7AN JAA, HIGH 1K21 CONTACTOR, 2-SPEED FAN 4AA, LOW	

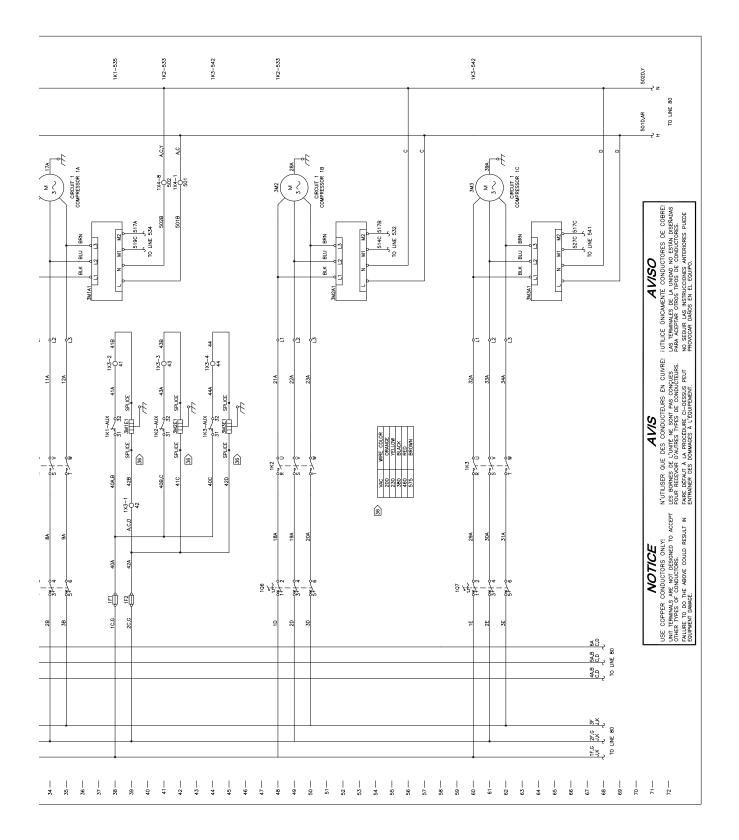
80-120 Ton - "W Frame" - Device Designators

535 547 548 549 549 549 549 549 549 549 549 549 549 549 549 549 549 549 549 549 549 541 542 5	11195 11231125 1188 1188 1186 1203 1182 1182 1182 1208 1208 1191 1191	MeRES MeRES VARES VARES VARES
3.53 3.55 3.53 3.53 3.51 3.53 3.51 <th< th=""><th>HATTE, MARTE PUME PICKAGE HATTE, MARTE PUME PICKAGE HATTE, MARTE PUME PIPING HATTE, PARTER PUME PIPING HATTER, BUFFTER TANK HATTER, PUME PIPING HATTER, WITTER PUME PIAGONGE HATTER, WITTER PUME PIAGONGE</th><th>BLOCK TERMINA E-MONDORICH MUKER INFE HER HEALERS BLOCK TERMINA E-MONDORICH MUKER INFE HER BLOCK TERMINA E-MONDERIC MUKER INFE HERVIL SIGTOMER PROVIED, OFFLICOUR - CHILLER MIKER FOULP ERVIL SIGTOMER PROVIED, OFFLICOUR, CHILLER MIKER FOULP ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGNAL PROVIED SIGNAL ERVIL SIGN</th></th<>	HATTE, MARTE PUME PICKAGE HATTE, MARTE PUME PICKAGE HATTE, MARTE PUME PIPING HATTE, PARTER PUME PIPING HATTER, BUFFTER TANK HATTER, PUME PIPING HATTER, WITTER PUME PIAGONGE HATTER, WITTER PUME PIAGONGE	BLOCK TERMINA E-MONDORICH MUKER INFE HER HEALERS BLOCK TERMINA E-MONDORICH MUKER INFE HER BLOCK TERMINA E-MONDERIC MUKER INFE HERVIL SIGTOMER PROVIED, OFFLICOUR - CHILLER MIKER FOULP ERVIL SIGTOMER PROVIED, OFFLICOUR, CHILLER MIKER FOULP ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED, OFFLICOURD ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGTOMER PROVIED SIGNAL ERVIL SIGNAL PROVIED SIGNAL ERVIL SIGN
AMALINE, LANDERSSER, IA, CHELLT I CONTINUES, LANDERSSER, IA, CHELLT I CONTINUES, COMPRESSIR, IA, CHELLT I CONTINUES, COMPRESSIR, IA, CHELLT I CONTINUE, LANDERSSIR, IA, CHELLT I CONTINUE, LANDERSSIR, IA, CHELLT I CONTINUE, LANDER CONTINUE, LANDER CONTINUE C	5.35 5.45 5.46 5.40 5.40 5.40 1.89 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	174 178 317 317 317 317 317 318 518 518 518 518 518 518 518 518 518 5
	CONTACTOR, COMPRESSOR II, CIRCUT 1 CONTACTOR, COMPRESSOR II, CIRCUT 1 CONTACTOR, COMPRESSOR II, CIRCUT 1 CONTACTOR, COMPRESSOR 2, CIRCUT 2 CONTACTOR, EXAMPLE CONTACTOR, EXA 349 CONTACTOR, EXA 349 CONTACTOR, EXA 349 CONTACTOR, EXA 349 CONTACTOR, EXA 349 CONTACTOR, EXA 349 CONTACTOR, EXA 340 CONTACTOR, EXA 340 CONTACT	CONTRACTOR, 2-SEED FM MM, HOH CONTRACTOR, 2-SEED FM MM, LOW CONTRACTOR, 2-SEED FM MM, LOW CONTRACTOR, 2-SEED FM MM, LOW FM MM, HOH FM MM, HOH FM MM, HOH FM MM, HOH FM MM, HOH FM MM, HOH FM MM M

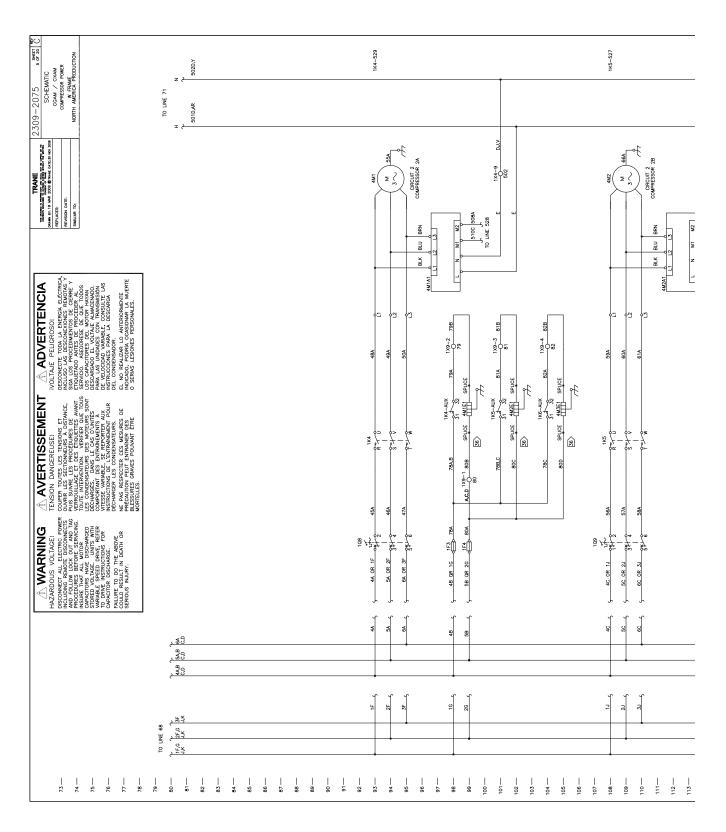
80-120 Ton - "W Frame" - Notes

Manual Control Control <th< th=""><th></th></th<>	
---	--

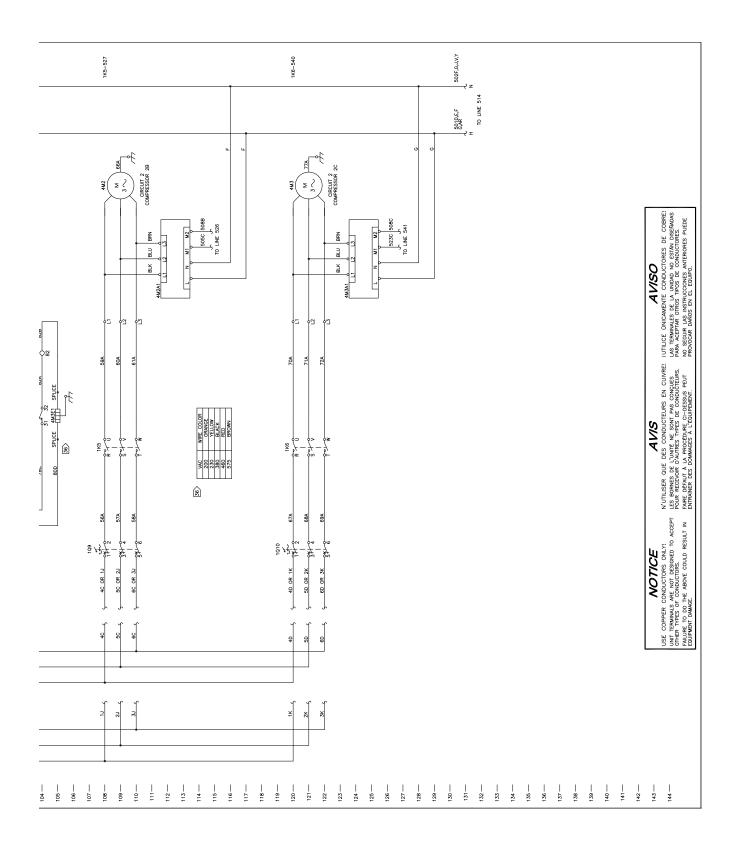

80-120 Ton - "W Frame" - Notes


Unit Wiring

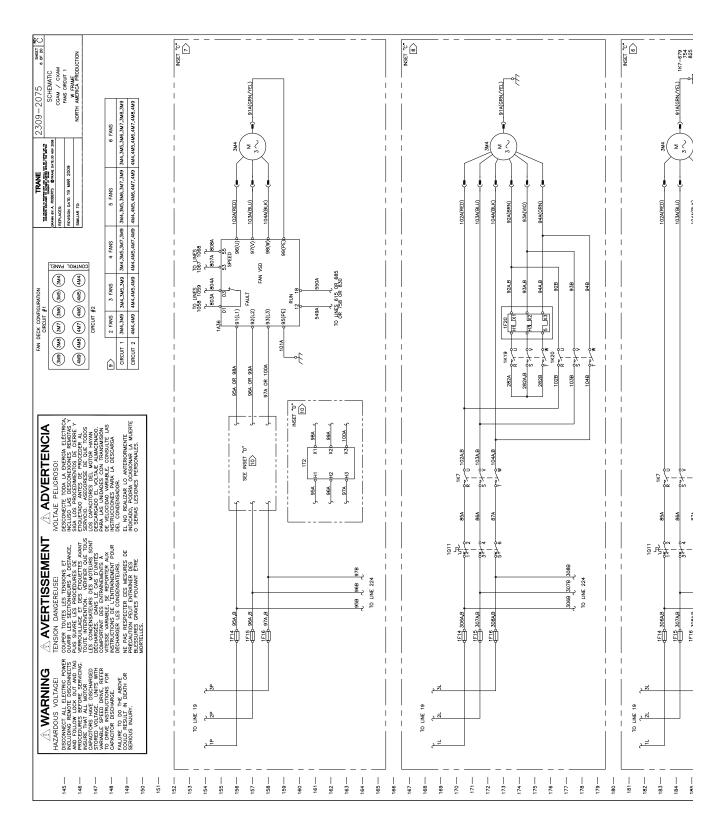
80-120 Ton - "W Frame" - Compressor Power

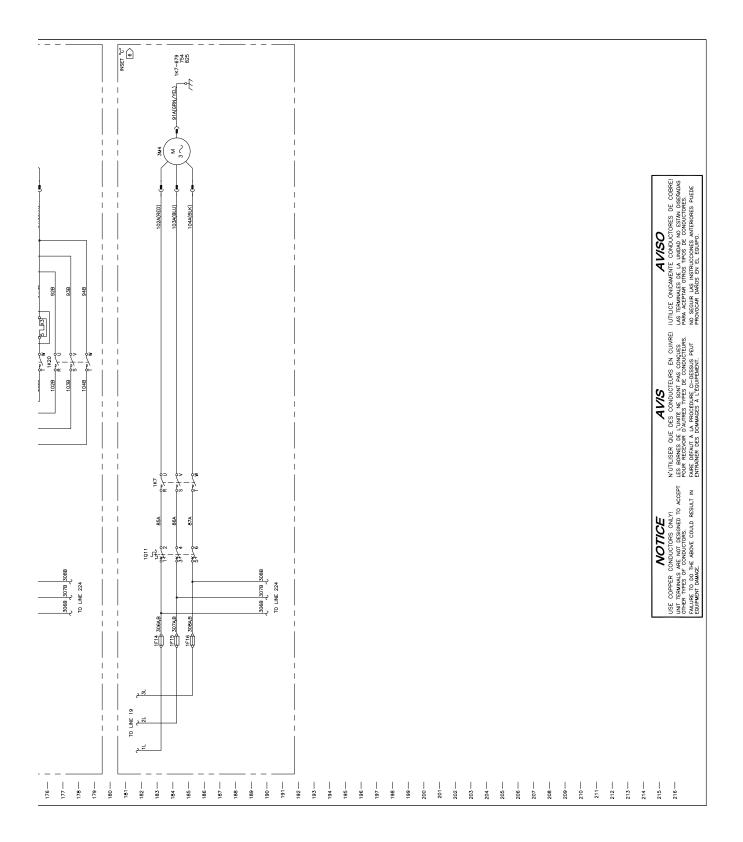


80-120 Ton - "W Frame" - Compressor Power

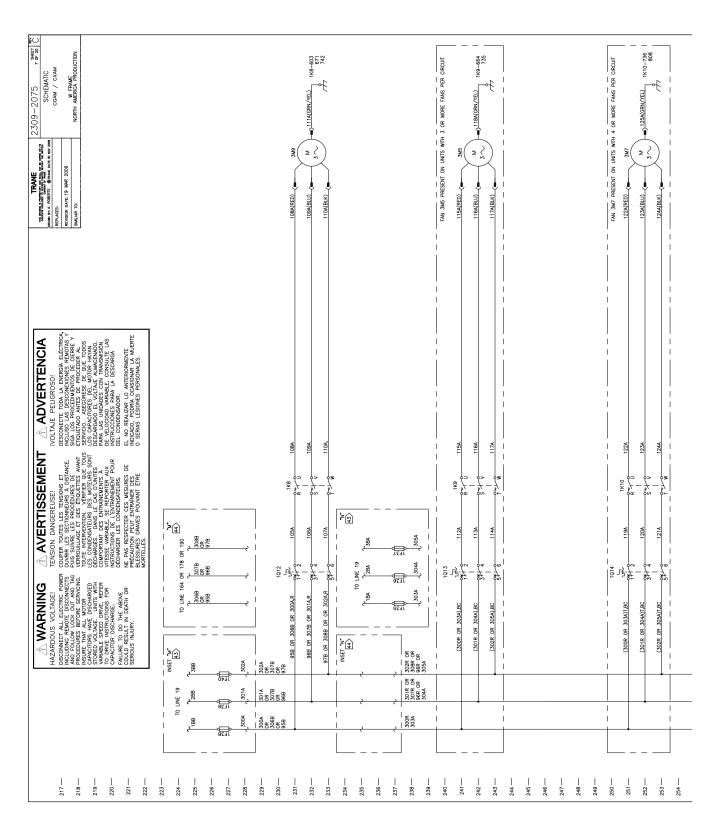


80-120 Ton - "W Frame" - Compressor Power continued

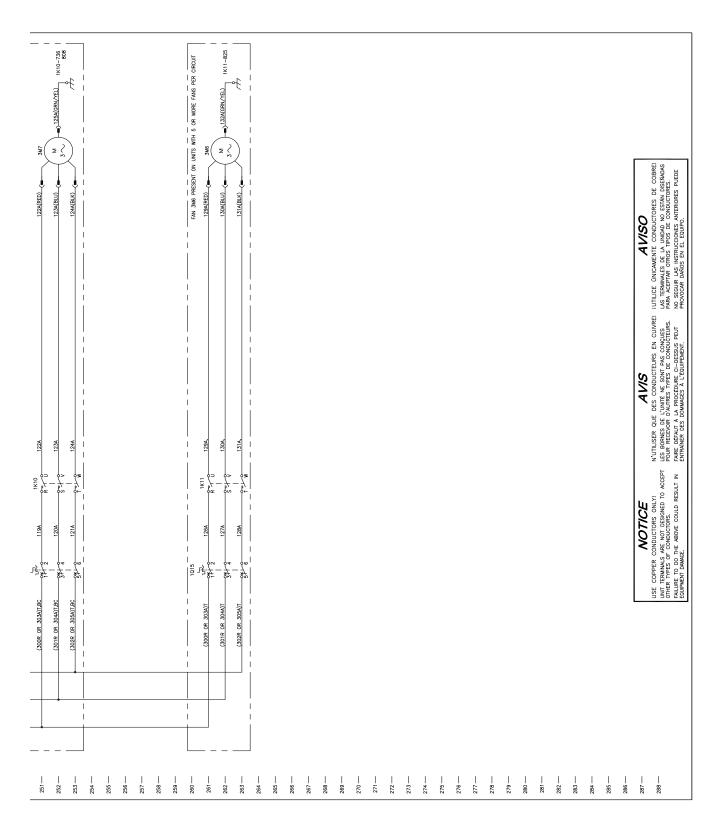

80-120 Ton - "W Frame" - Compressor Power continued


Unit Wiring

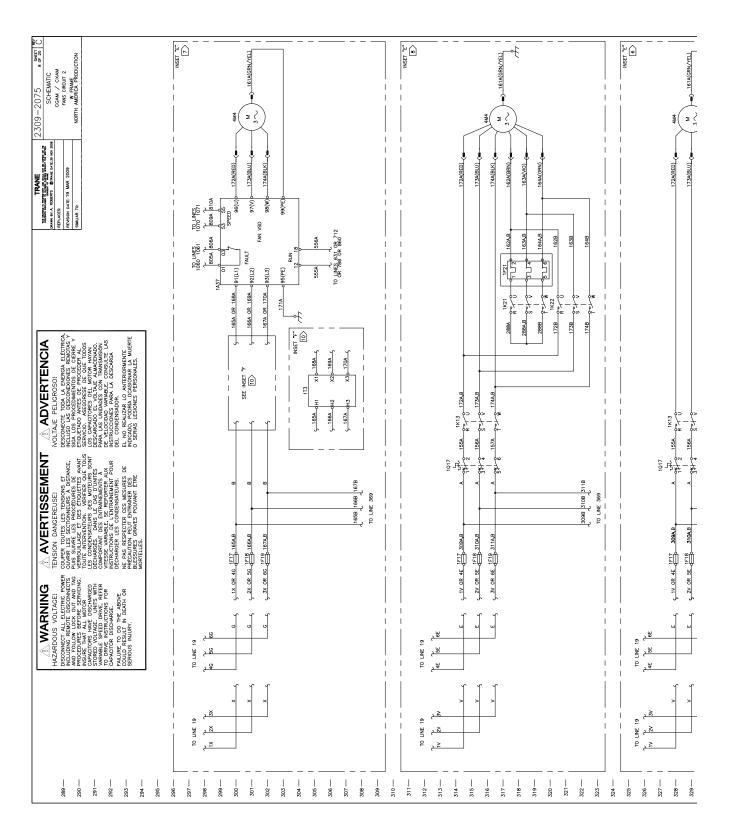
80-120 Ton - "W Frame" - Fans Circuit 1

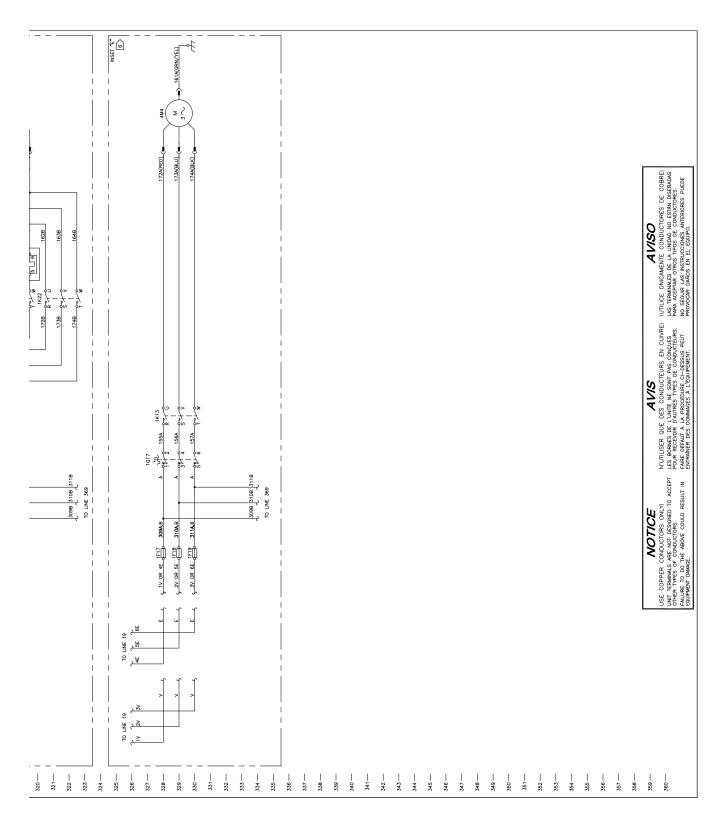


80-120 Ton - "W Frame" - Fans Circuit 1

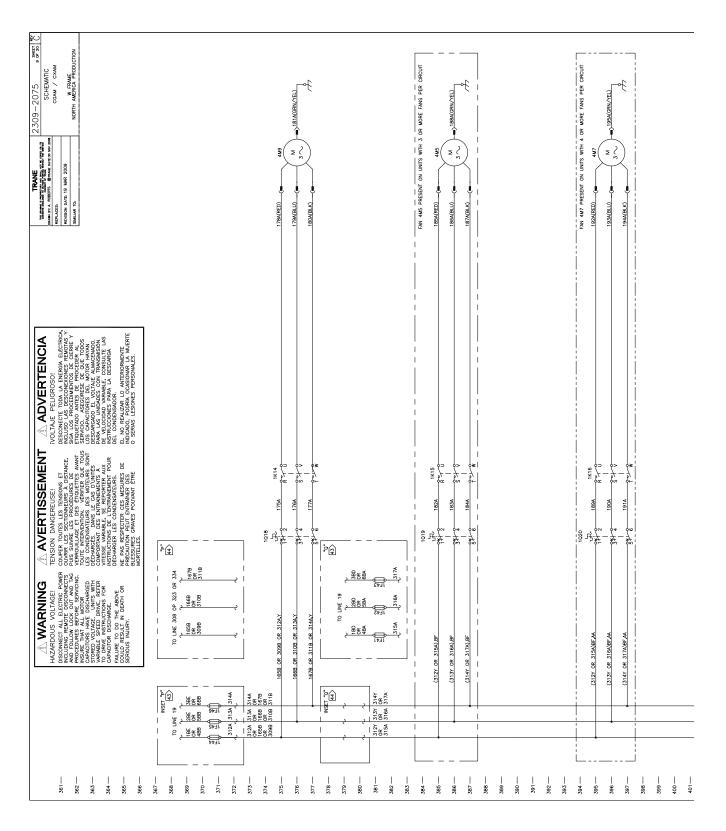


80-120 Ton - "W Frame" - Fans Circuit 1 continu

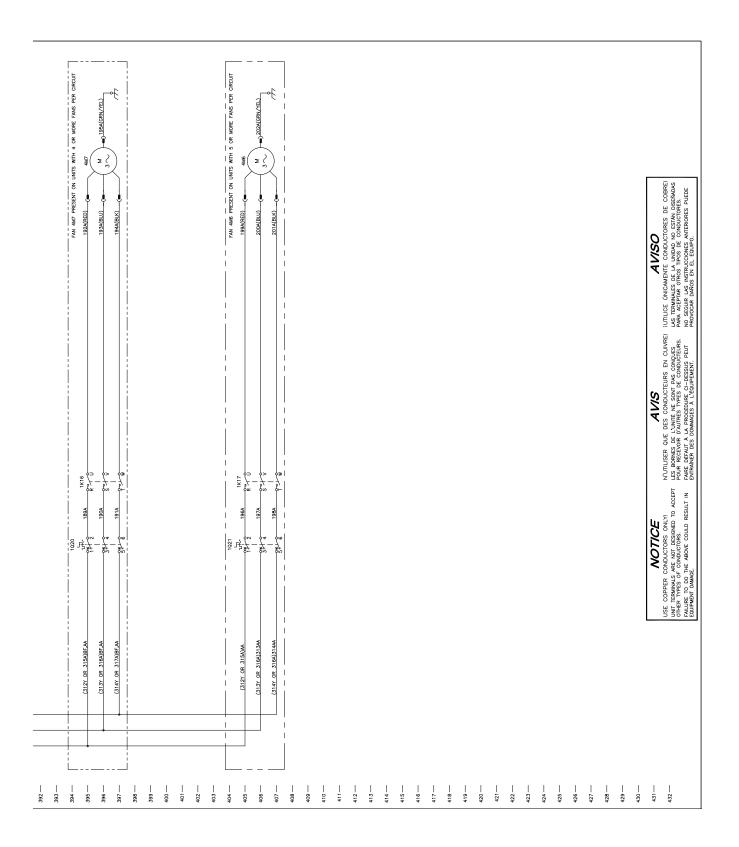

80-120 Ton - "W Frame" - Fans Circuit 1 continued


Unit Wiring

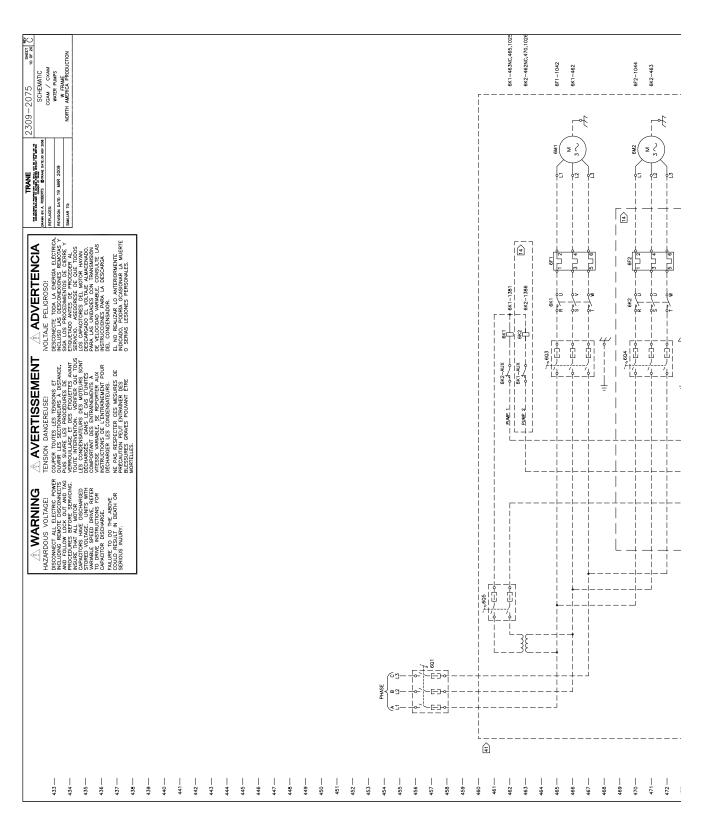
80-120 Ton - "W Frame" - Fans Circuit 2



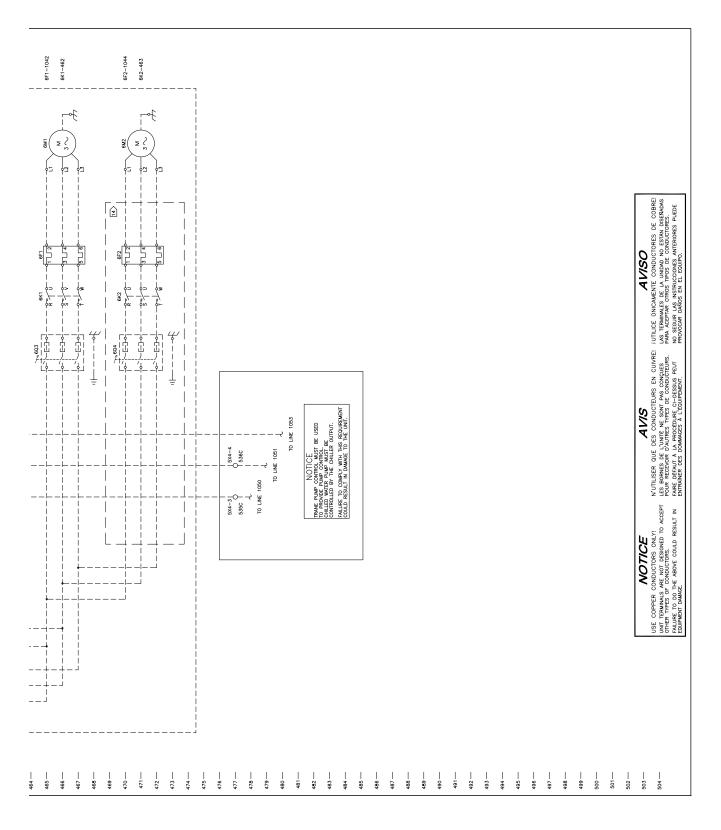
80-120 Ton - "W Frame" - Fans Circuit 2



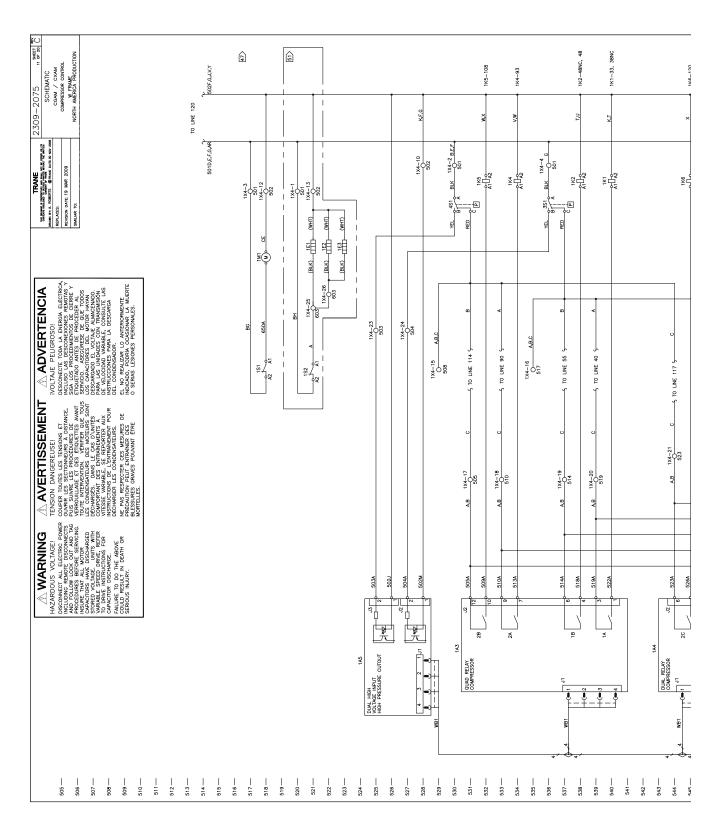
80-120 Ton - "W Frame" - Fans Circuit 2 continued



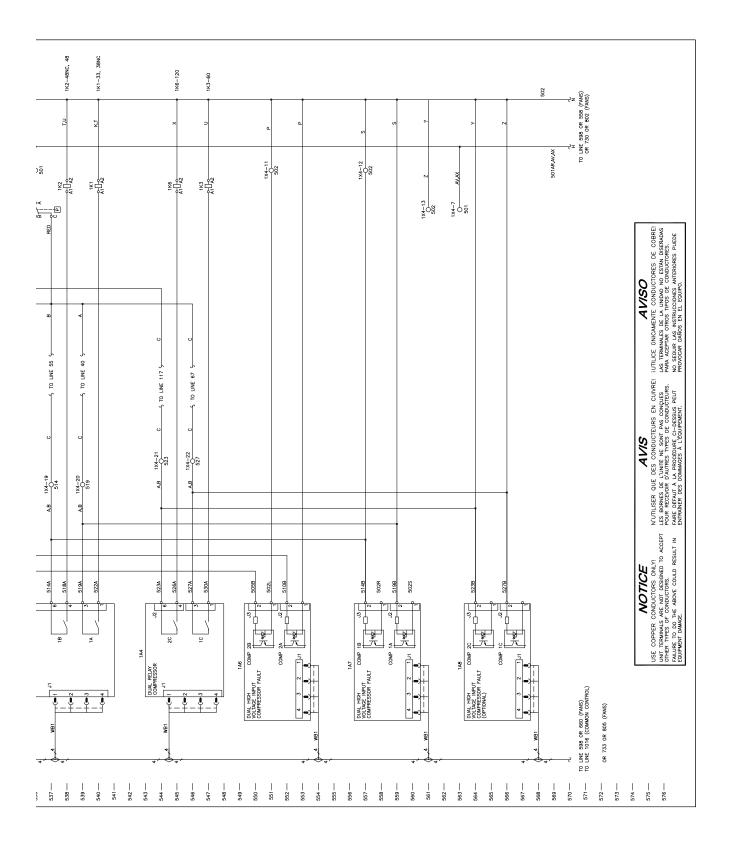
80-120 Ton - "W Frame" - Fans Circuit 2 continued



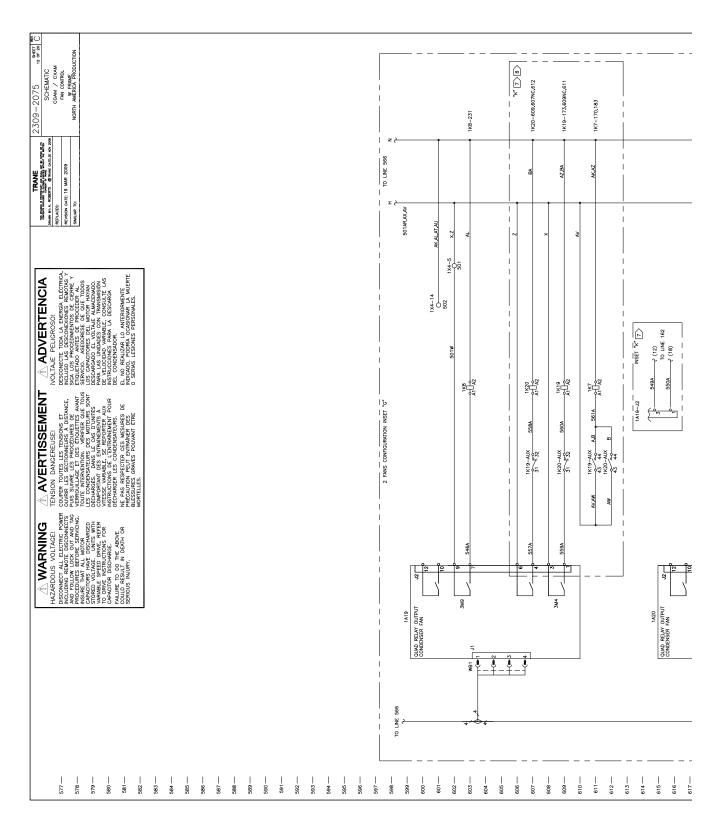
80-120 Ton - "W Frame" - Water Pumps



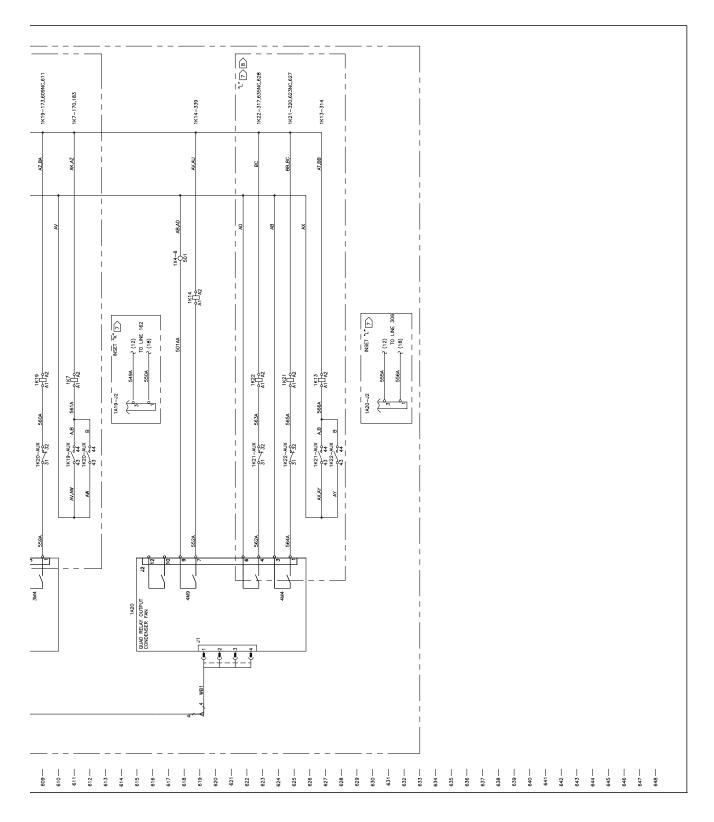
80-120 Ton - "W Frame" - Water Pumps



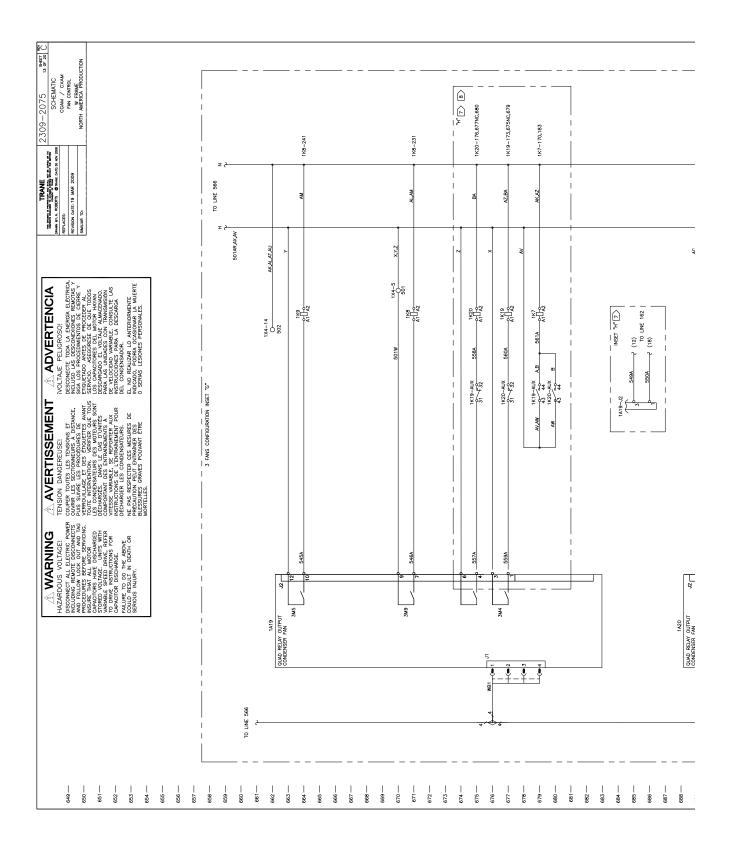
80-120 Ton - "W Frame" - Compressor Control

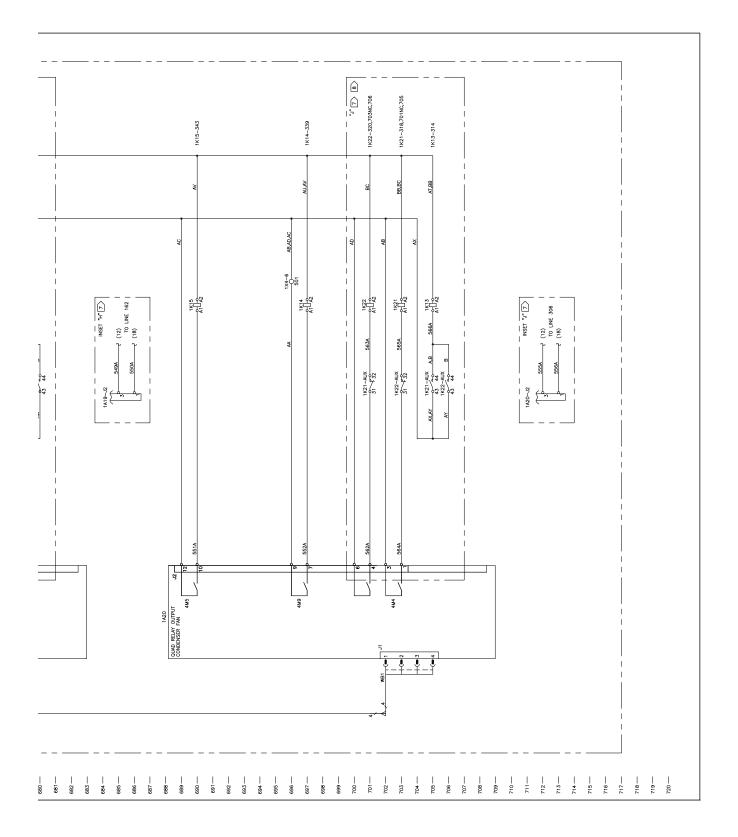


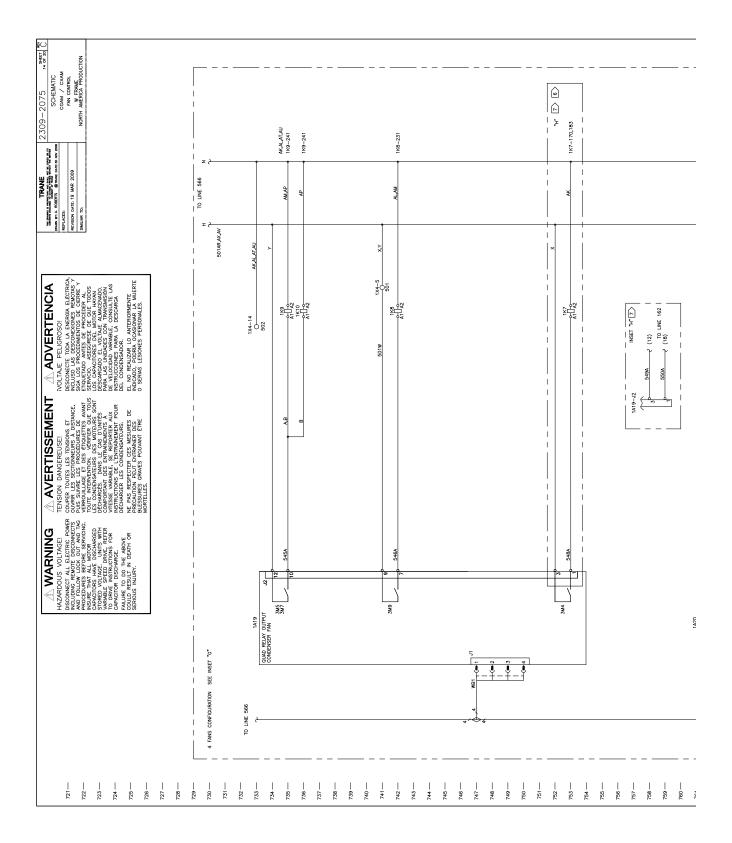
80-120 Ton - "W Frame" - Compressor Control

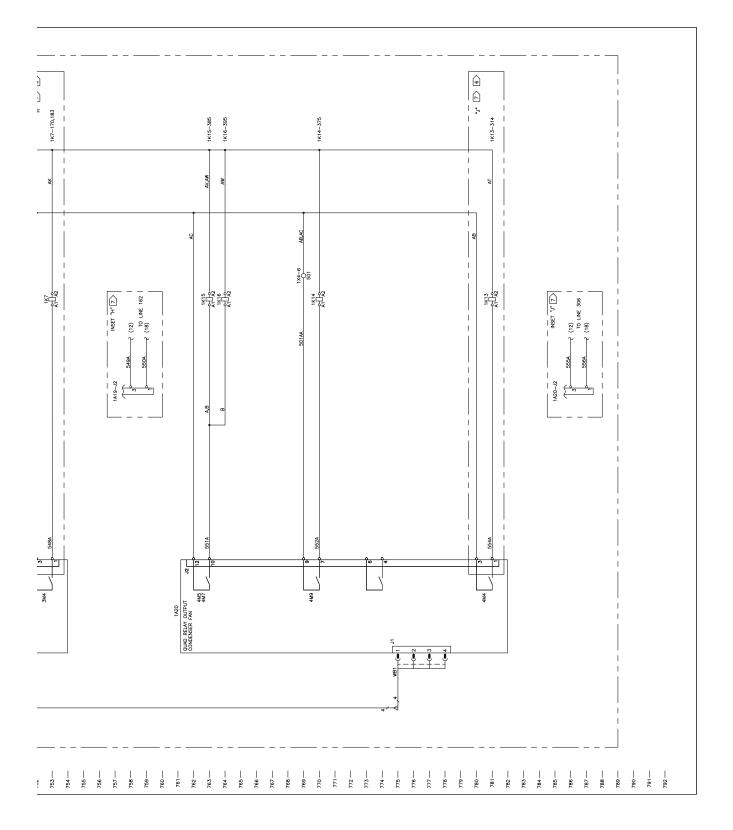


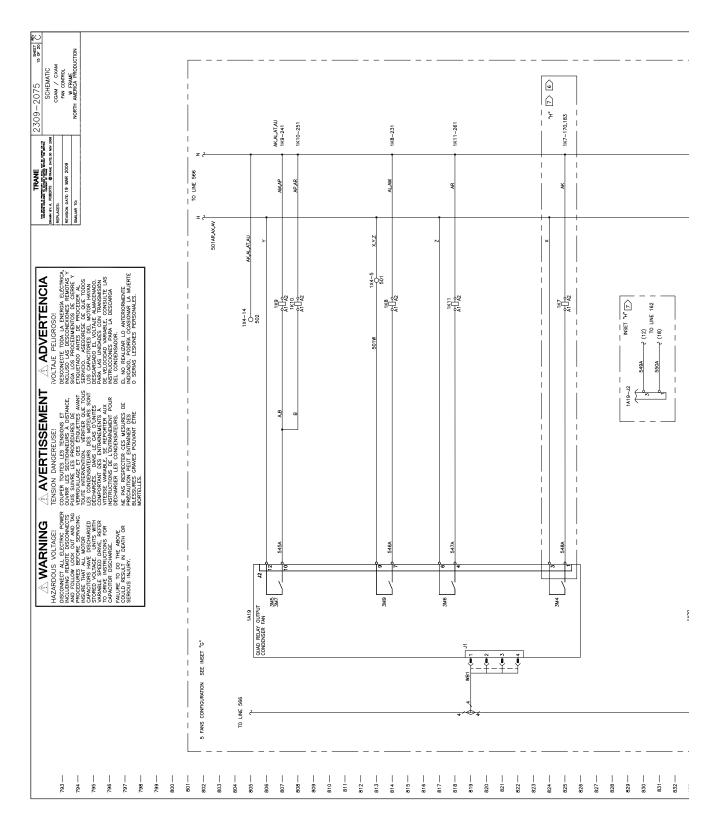
80-120 Ton - "W Frame" - Fan Control

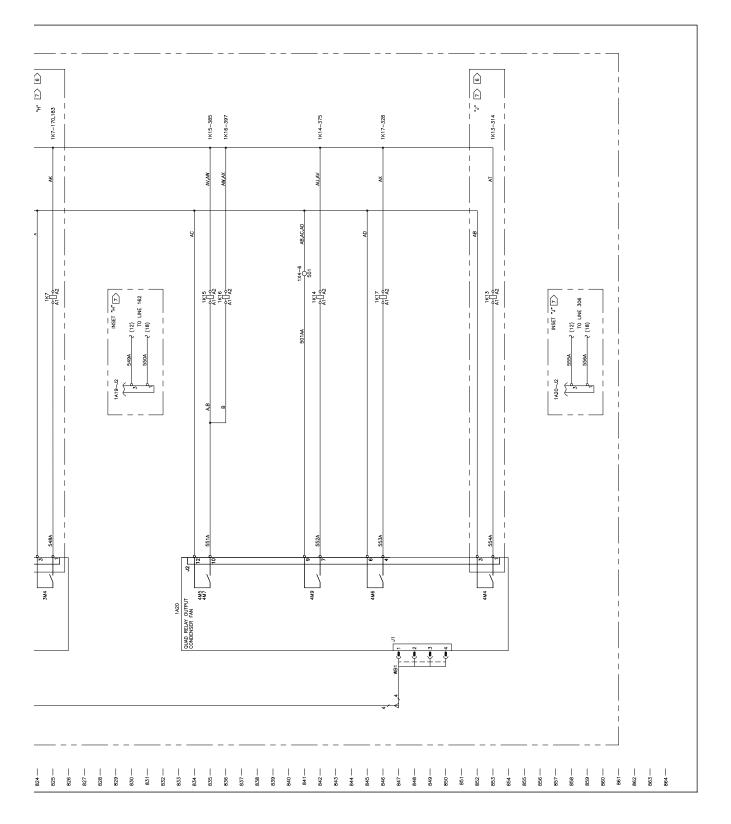


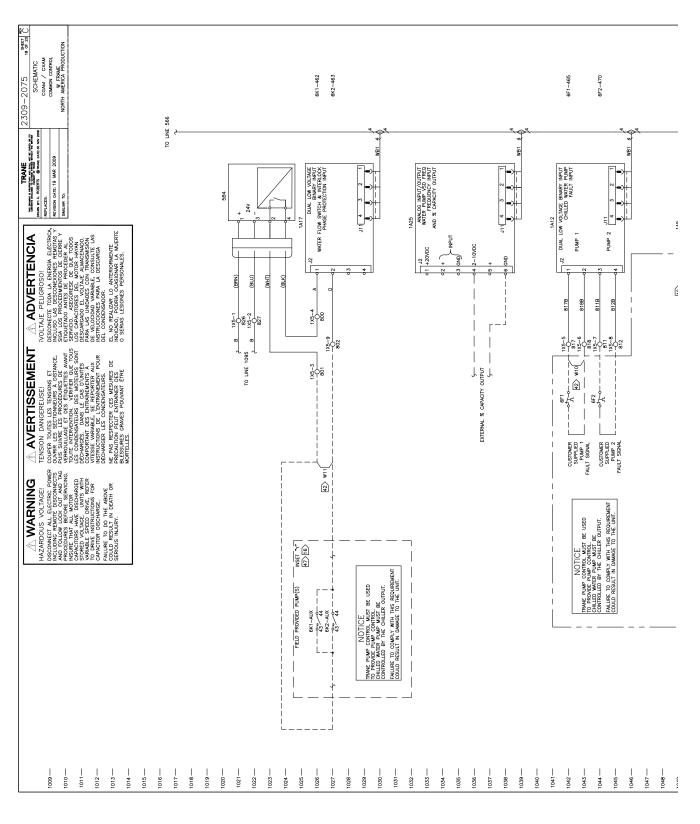

80-120 - "W Frame" - Fan Control

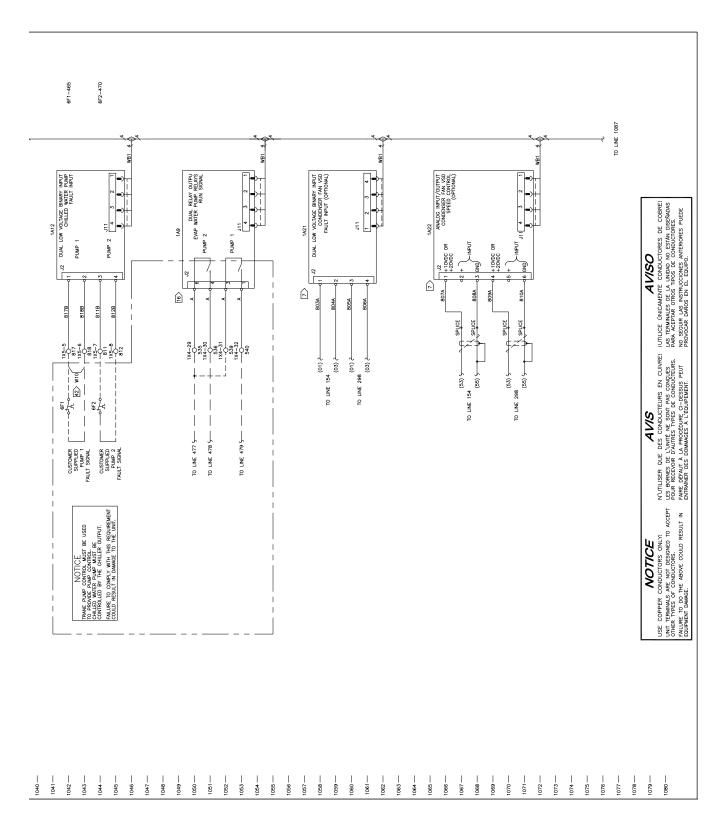




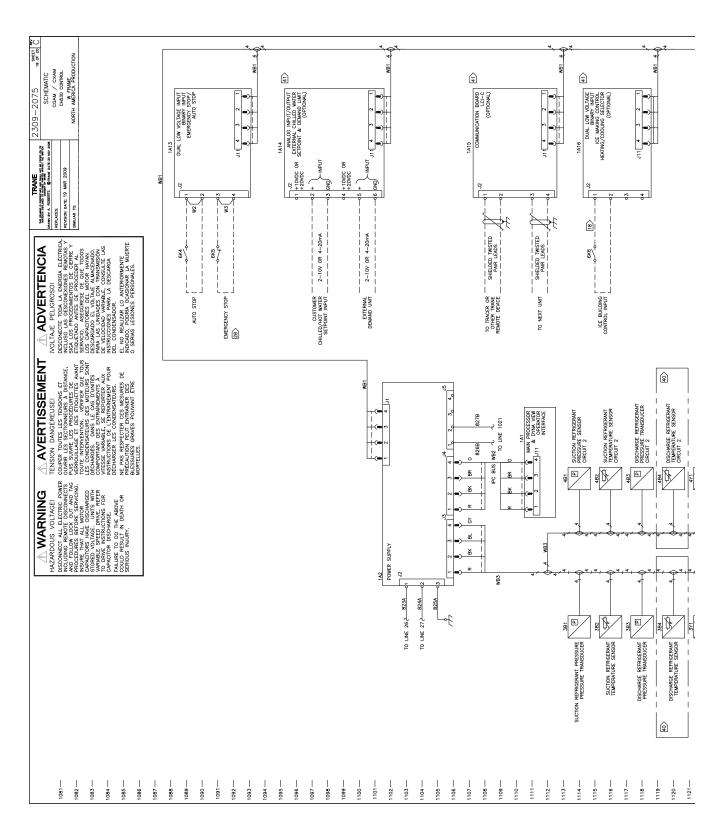




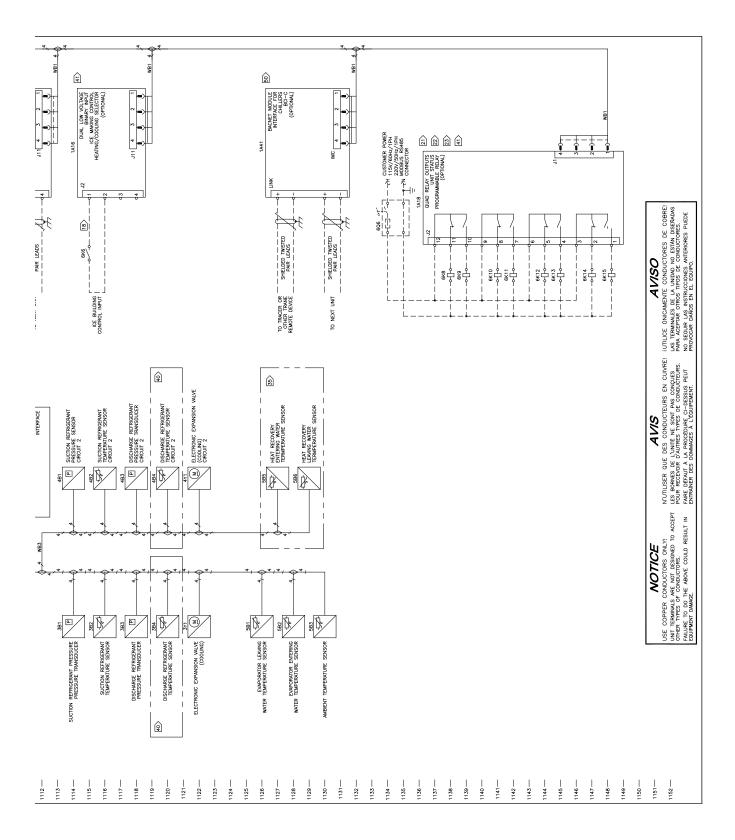



Unit Wiring

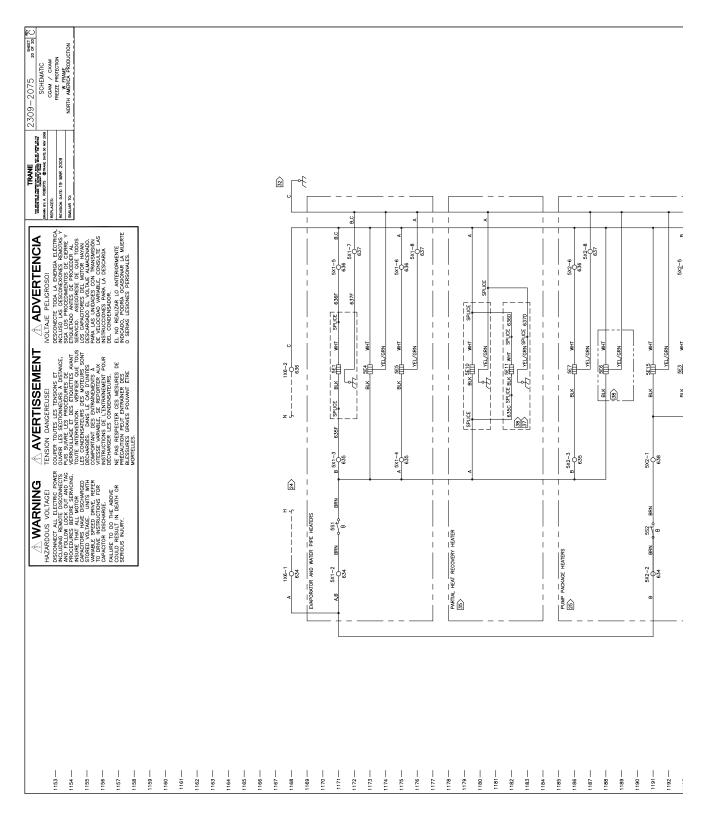
80-120 Ton - "W Frame" - Common Control



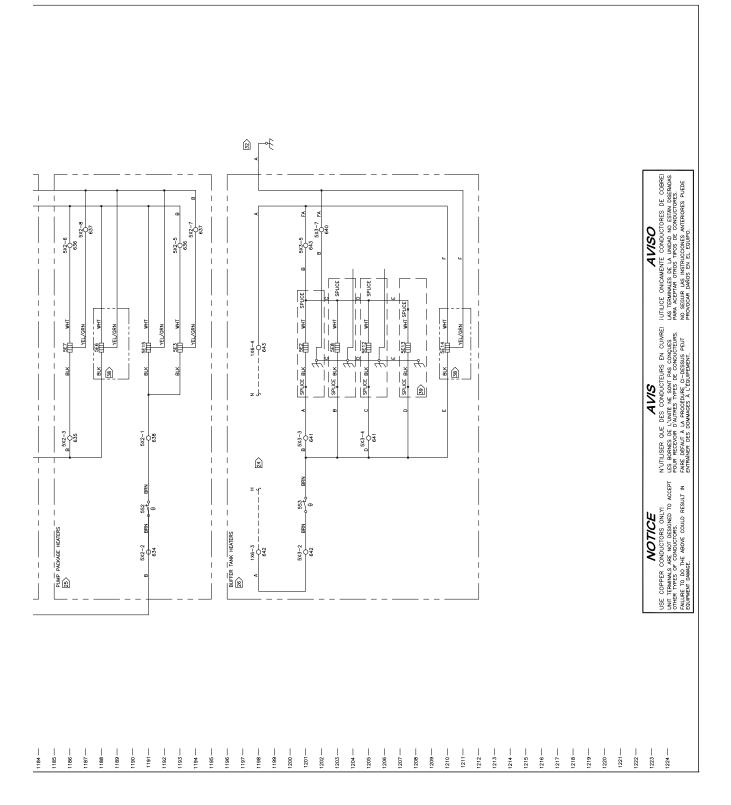
80-120 Ton - "W Frame" - Common Control



80-120 Ton - "W Frame" - CH530 Control

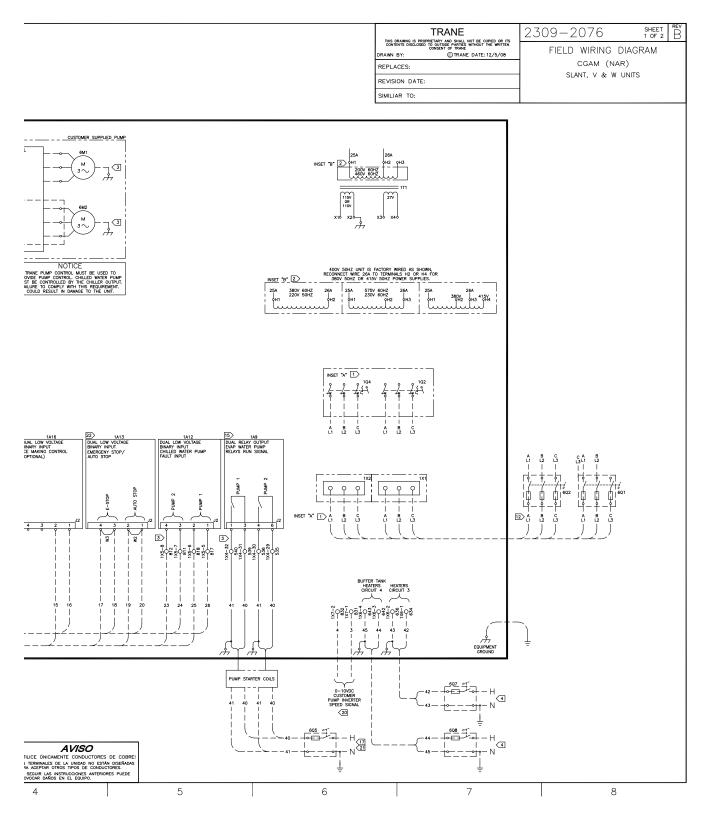


80-120 Ton - "W Frame" - CH530 Control



80-120 Ton - "W Frame" - Freeze Protection

80-120 Ton - "W Frame" - Freeze Protection



Field Wiring Diagram

Field Wiring Diagram

Field Wiring Diagram - Notes

	1 SINGLE SOURCE POWER IS PROVIDED AS STANDARD ON THESE PRODUCTS, DUAL SOURCE POWER IS OPTIONAL (PLIN=DUAL). FIELD CONNECTIONS FOR SINGLE (PLIN=SNGL) SOURCE POWER ARE MADE TO 1X1, OR 102. WHEN THE OPTIONAL DUAL SOURCE POWER IS SELECTED THE FIELD CONNECTIONS FOR	
A	CIRCUIT #2 ARE MADE TO 1X2, OR 1Q4. FOR VOLTAGES 200V/60HZ, 220V/50HZ, 380V/60HZ, 460V/60HZ, WIRE 26A SHALL BE CONNECTED TO H2. FOR VOLTAGES 230V/60HZ & 575V/60HZ, WIRE 26A SHALL BE CONNECT TO H3. 400V/50HZ UNIT IS FACTORY WIRED WITH 26A CONNECTED TO H3 - RECONNECT WIRE 26A TO H2 FOR 380V/50HZ, OR H4 FOR 415V/50HZ. H4 IS ONLY AVAILABLE WITH 400V/50HZ PANELS.	
	3 FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP (PTYP=NONE). THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY (PTYP=DHHP).	
	4 CUSTOMER SUPPLIED POWER 115/60/1 OR 220/50/1 TO POWER RELAYS. MAX. FUSE SIZE IS 20 AMPS. GROUND ALL CUSTOMER SUPPLIED POWER SUPPLIES AS REQUIRED BY APPLICABLE CODES. GREEN GROUND SCREWS ARE PROVIDED IN UNIT CONTROL PANEL.	
	5 WIRED TO NEXT UNIT. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEDE 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.	- - -
	6 WIRED TO TRACER OR OTHER TRANE REMOTE DEVICE. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEED 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.	-
В	7 WIRED TO CUSTOMER CHILLED WATER SET POINT 2-10V OR 4-20mA.	
	8 WIRED TO CUSTOMER EXTERNAL DEMAND LIMIT 2-10V OR 4-20mA.	F
	9 WIRED TO CUSTOMER 2-10V OR 4-20mA % CAPACITY ANNUNICIATOR.	
	11. REFER TO CGAM ELECTRICAL SCHEMATIC FOR SPECIFIC ELECTRICAL CONNECTION INFORMATION AND NOTES PERTAINING TO WIRING INSTALLATION.	
	12) ALL UNIT POWER WIRING MUST BE 600 VOLT COPPER CONDUCTORS ONLY AND HAVE A MINIMUM TEMPERATURE INSULATION RATING OF 90 DEGREE C. REFER TO UNIT NAMEPLATE FOR MINIMUM CIRCUIT AMPACITY AND MAXIMUM OVERCURRENT PROTECTION DEVICE. PROVIDE AN EQUIPMENT GROUND IN ACCORDANCE WITH APPLICABLE ELECTRIC CODES. REFER TO WIRE RANGE TABLE FOR LUG SIZES.	
	13. ALL FIELD WIRING MUST BE IN ACCORDANCE WITH NATIONAL ELECTRIC CODE AND LOCAL REQUIREMENTS.	-
С	14. ALL CUSTOMER CONTROL CIRCUIT WIRING MUST BE COPPER CONDUCTORS ONLY AND HAVE A MINIMUM INSULATION RATING OF 300 VOLTS. EXCEPT AS NOTED, ALL CUSTOMER WIRING CONNECTIONS ARE MADE TO CIRCUIT BOARD MOUNTED BOX LUGS WITH A WIRE RANGE OF 14 TO 18 AWG OR DIN RAIL MOUNTED SPRING FORCE TERMINALS.	-
	15)UNIT PROVIDED DRY CONTACTS FOR THE CONDENSER/CHILLED WATER PUMP CONTROL. RELAYS ARE RATED FOR 7.2 AMPS RESISTIVE, 2.88 AMPS PILOT DUTY, OR 浅 HP, 7.2 FLA AT 120 VOLTS 60 HZ, CONTACTS ARE RATED FOR 5 AMPS GENERAL PURPOSE DUTY 240 VOLTS.	-
	16 CUSTOMER SUPPLIED CONTACTS FOR ALL LOW VOLTAGE CONNECTIONS MUST BE COMPATABLE WITH DRY CIRCUIT 24 VOLTS DC FOR A 12 mA RESISTIVE LOAD. SILVER OR GOLD PLATED CONTACTS RECOMMENDED.	-
	17 FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP. THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY. CUSTOMER SUPPLIED POWER 115V, 60Hz, 1PH.	
	18 CUSTOMER SUPPLIED 3 PHASE POWER.	
	19 OPTIONAL FIELD ASSIGNED PROGRAMMABLE RELAYS (STAT=PRLY). CLASS 1 FIELD WIRED MODULE, RELAY AT 120V: 7.2A RESISTIVE 2.88A PILOT DUTY, 1/2HP 7.2FLA; AT 240VAC: 5 AMPS GENERAL PURPOSE.	
D	20> WIRED TO CUSTOMER 0-10 VDC PUMP SPEED SIGNAL.	L
D	21 WHEN FACTORY PROVIDED PUMP IS NOT SELECTED. CUSTOMER MUST SUPPLY SUITABLE PUMP SYSTEM. REFER TO PUMP MANUFACTURER FOR WIRING REQUIREMENTS.	
	 THE CONTACTS FOR AUTO STOP AND EMERGENCY STOP SWITCHES ARE JUMPERED AT THE FACTORY BY JUMPERS W2 & W3 TO ENABLE UNIT OPERATION. IF REMOTE CONTROL IS DESIRED, REMOVED THE JUMPERS AND CONNECT TO THE DESIRED CONTROL CIRCUIT. 1A15, LCI MODULE USED WHEN (COMM = LCI). 	
	24 1A41, BACNET INTERFACE MODULE USED WHEN (COMM = BCNT).	
_	1 2 3 4	5

Field Wiring Diagrams - Notes

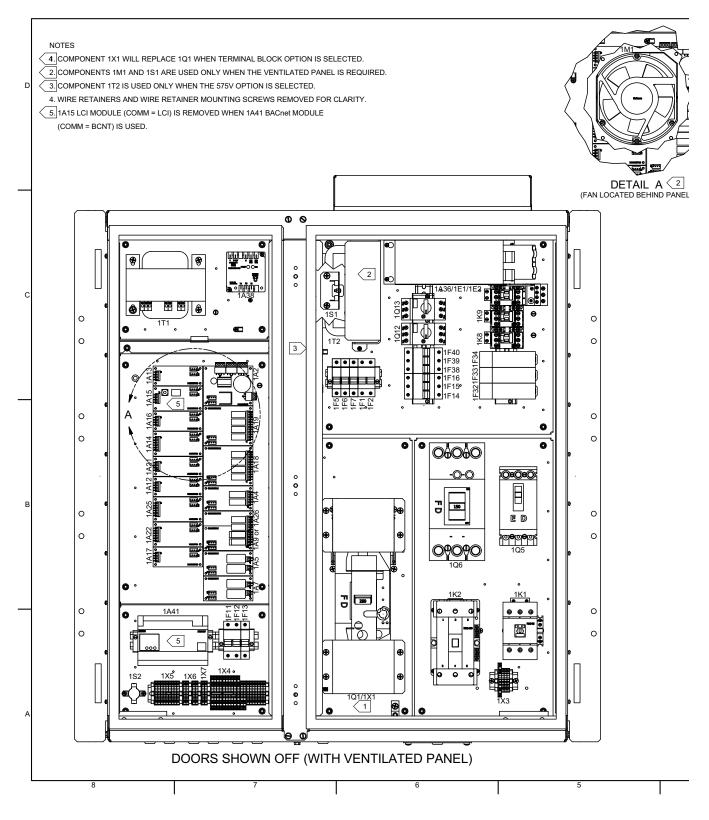
						2309-2076	SHEET REV 2 OF 2
				DRAW	DRAWING IS PROPRIETARY AND SHALL NOT BE COPIED OR ITS ITENTS DISCLOSED TO GUITSDE PARTIES WITHOUT THE WRITTEN CONSENT OF TRANE N BY: ©TRANE DATE: 12/5/08	FIELD WIRING	DIAGRAM
					A BY: C IRANE DATE: 12/5/08	CGAM (NA	R)
					SION DATE:	SLANT, V & W	UNITS
						-	
				SIMIL	JAR TO:		
		REF		ENT F	USE TABLE		
FUSE	VOLTAGE	Ηz	CLASS		NOTES		
1 F 1	ALL	ALL	СС	10	FUSE, COMPRESSOR CRANKC	ASE HEATER,	
1F2 1F3	ALL	ALL	CC CC	10	CIRCUIT 1 FUSE, COMPRESSOR CRANKC	AGE LEATED	
1F3 1F4	ALL	ALL	CC	10	CIRCUIT 2	AGE HEATER,	
	200	60	CC	10			
	230	60	СС	8			
1F5, 1F6	380 400	60 50	CC CC	5	FUSE, CONTROL POWER TRAN PRIMARY	SFORMER,	
IFO	400	60	CC	5	PRIMART		
	575	60	CC	4			
	200	60	СС	10			
	230	60	CC	8		TION	
1F7	380 400	60 50	CC CC	5	THIRD PHASE, PHASE PROTEC MONITOR	TION	
	460	60	CC	5	MONITOR		
	575	60	СС	4			
	200	60	СС	10			
1F8,	230 380	60 60	CC CC	8	DUAL POINT, POWER SECOND PHASE,		
1F9,	400	50	CC	5	PHASE PROTECTION MONITOR	LINGE,	
1F10	460	60	СС	5]		
	575	60	СС	4			
1F11	ALL	ALL	СС	10	SECUNDARY, 115V		
12 - 1F13	ALL	ALL	СС	6	FUSE, CONTROL POWER TRAN SECONDARY, 24V	SFURMER,	
14 - 1F16	200-460	ALL	СС	30	FUSE, INVERTER, FAN		
17 - 1F19	575	60	СС	6	(FAST ACTING EXCEPT 575V)		
38 - 1F40 44 - 1F46	ALL	ALL	СС	30	FAST ACTING FUSE, ATM-R-30		
38 - 1F40 41 - 1F43	ALL	ALL	СС	30	FAST ACTING FUSE, USED ONLY ON W UNITS		
					P INVERTER FUSE		
	200,230	60	J	30	3.7Kw VSD		
	460,575	60	J	25	5.5 Kw VSD		
1F32,	200,230			60	7 EK VOD		
1F33, 1F34	460,575	60	J	30	7.5Kw VSD		
	200,230			60	11Kw VSD		
		60	J				
	460,575		1	40	1		

4	

5

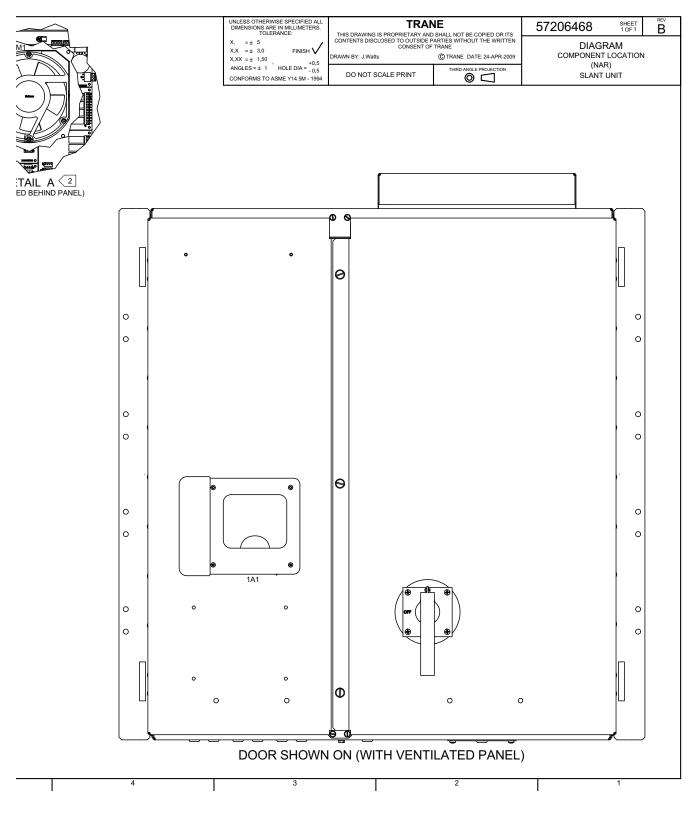
1F14 - 1 1F17 - 1

1F38 1F44 1F38 -1F41 -

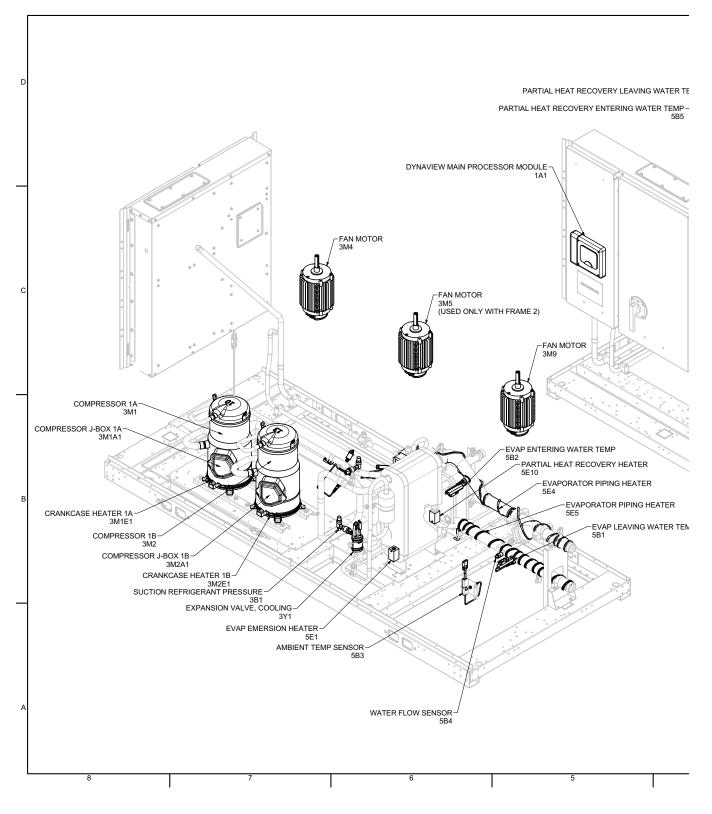

6

7

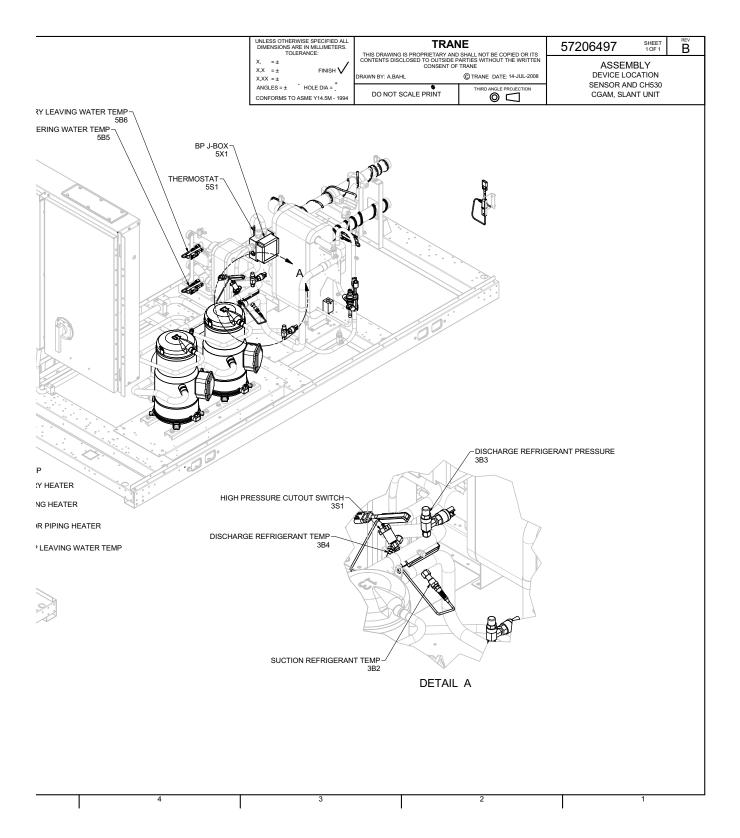
8



20-35 Ton - "Slant Frame" - Component Location



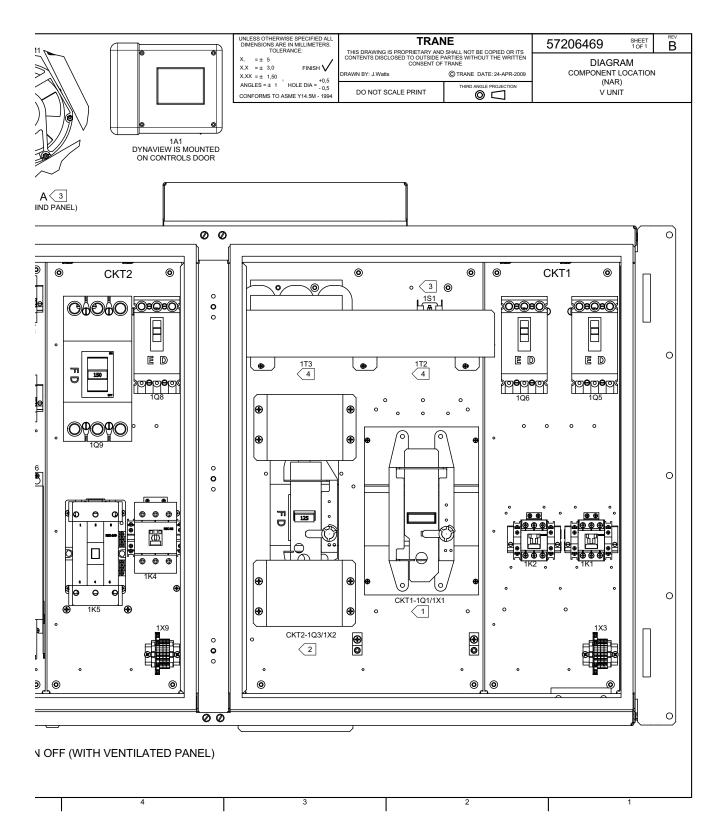
20-35 Ton - "Slant Frame" - Component Location



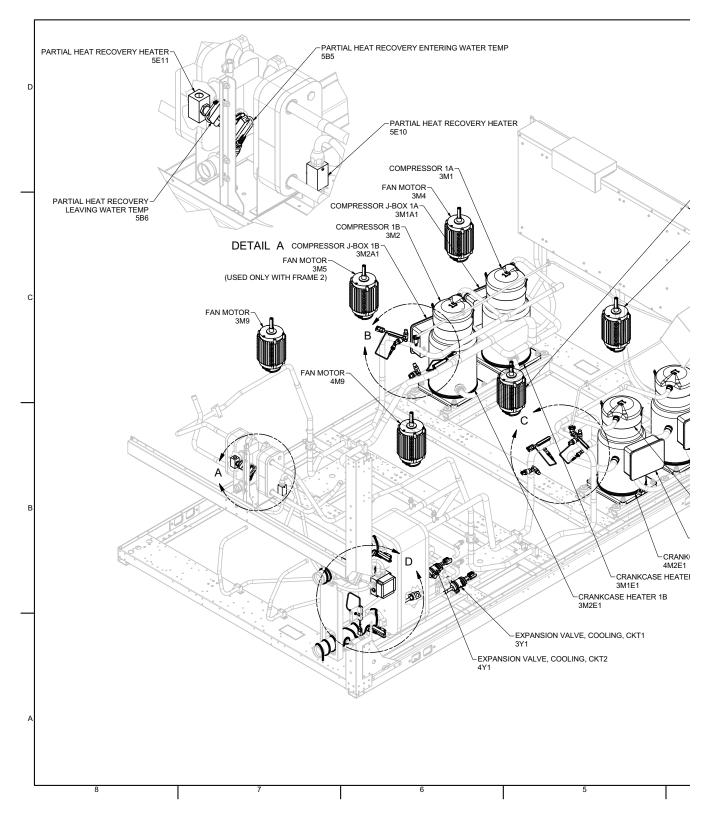
20-35 Ton - "Slant Frame" - Device Location



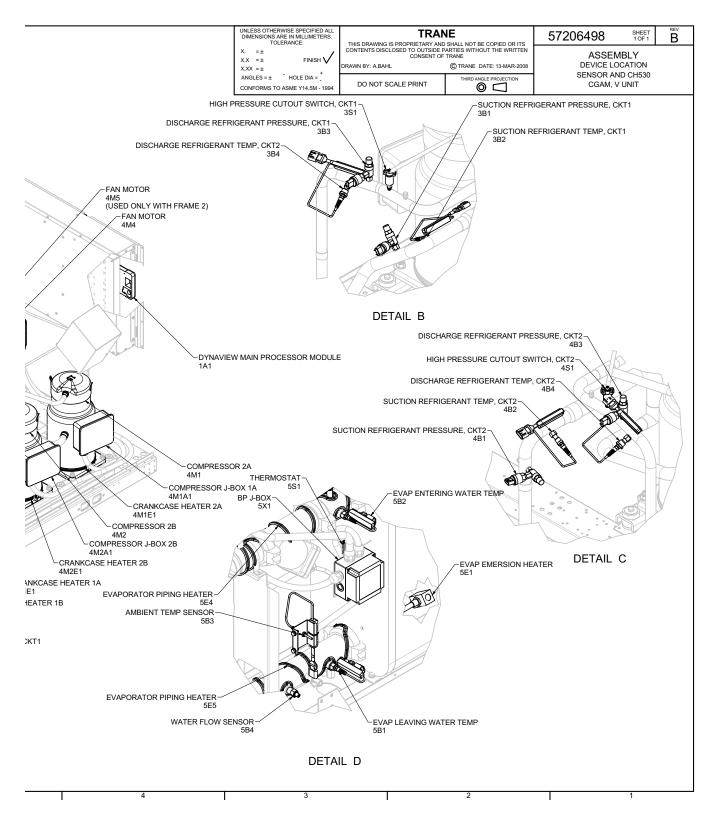
20-35 Ton - "Slant Frame" - Device Location



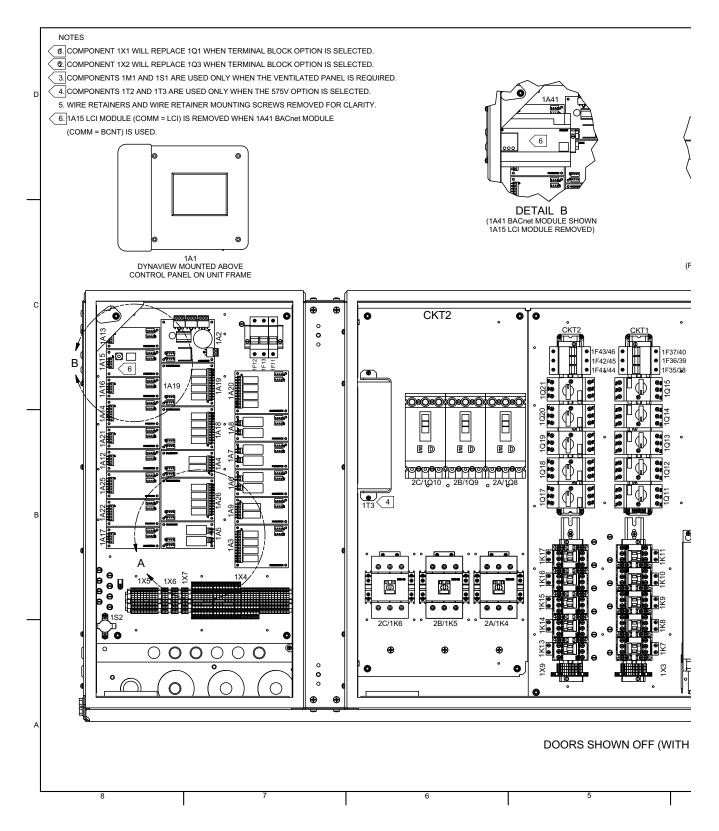
40-70 Ton - "V Frame" - Component Location


40-70 Ton - "V Frame" - Component Location

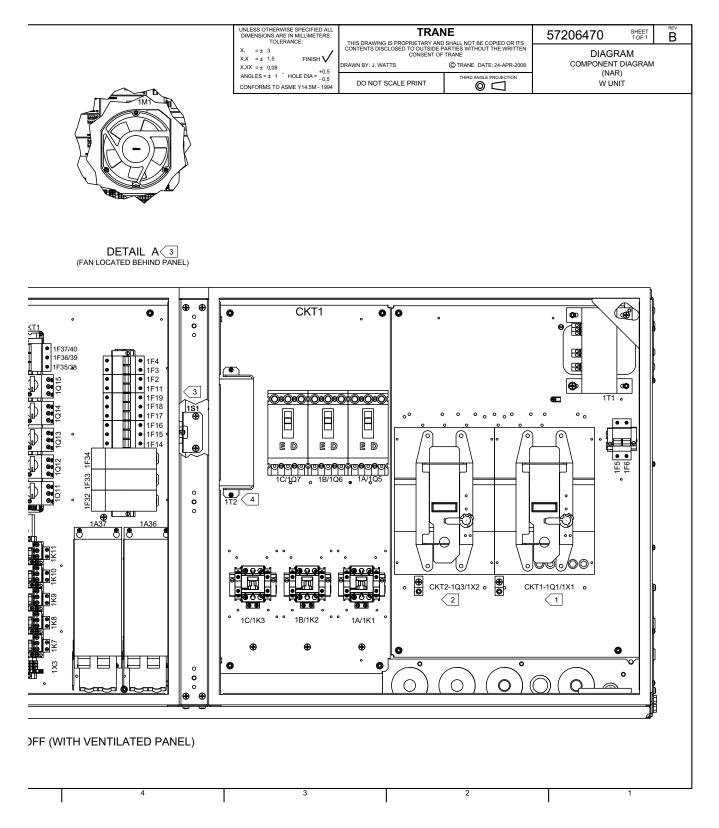
265



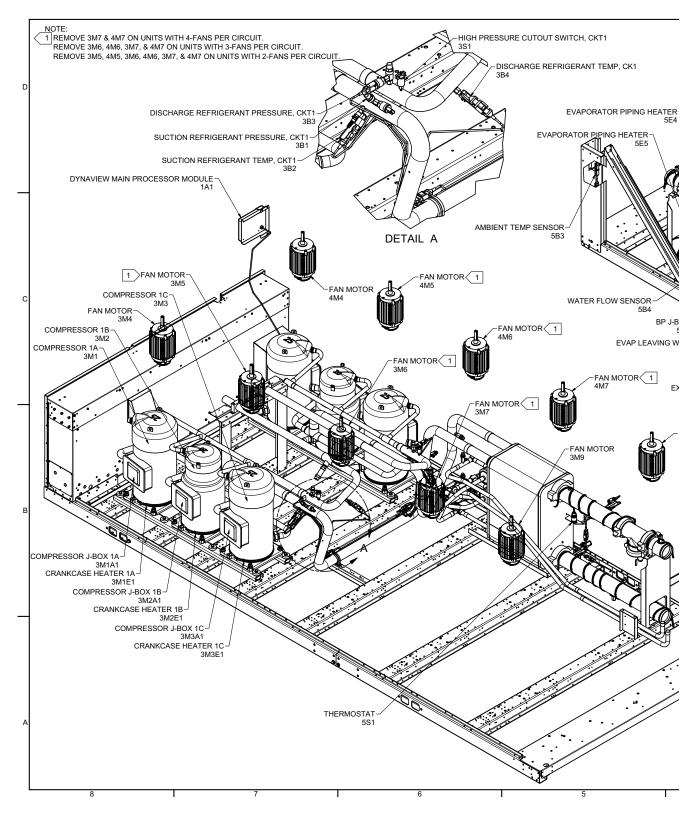
40-70 Ton - "V Frame" - Device Location



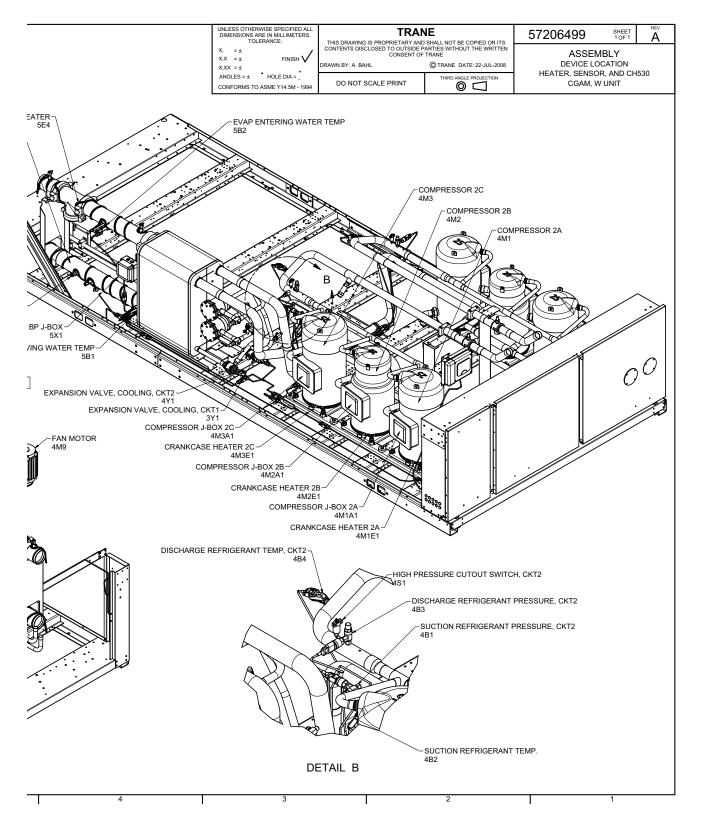
40-70 Ton - "V Frame" - Device Location



80-120 Ton - "W Frame" - Component Location



80-120 Ton - "W Frame" - Component Location



80-120 Ton - "W Frame" - Device Location

80-120 Ton - "W Frame" - Device Location

Trane www.trane.com

For more information, contact your local Trane office or e-mail us at comfort@trane.com

Literature Order Number	CG-SVX17C-EN
Date	February 2010
Supersedes	CG-SVX17B-EN (July 2009)

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.